MAIZE GENETICS COOPERATION

NEWS LETTER

61

March 31, 1987

The data presented here are not to be used in publications without the consent of the authors.

Department of Agronomy and U.S. Department of Agriculture University of Missouri Columbia, Missouri

TABLE	OF	CONTENTS

I. FOREWORD	
II. REPORTS FROM COOPERATORS	аколарынанын З
ALMORA, U.P., INDIA Preliminary observations on drought tolerance in Sikkim Primitive maize	Mani, V. P., Jotshi, H. C., Koranne, K. D.
AMES, IOWA	-Niashash-Klasson II Pataran P A
c2-mi; the frequency of revertant colored versus colorless derivatives (cont.)	Wiesbach-Klosgen, 0., reterson, r. A.
Deficiency C-Sh-Bz-857003	Peterson, P. A.
$\frac{wx-857027}{C_{1}-857101}$	Peterson, P. A.
a2-m55064 - an autonomously mutating a2 allele	Peterson, P. A.
a2-m668140 - a basic pale allele that is modified in mutability expression by a fine factor	orPeterson, P. A.
En-controlled I element inserts with the C-I allele: C-Im857059 and C-Im857062	Peterson, P. A.
G=1m85/062 The No content of several breeding populations	Jayaram, Ch., Peterson, P. A.
Test for presence of controlling elements in populations	Karasawa, M., Peterson, P. A.
Ten mutant alleles at the C locus: complementation potential	Jayaram, Ch., Peterson, P. A.
C-Im846079: a highly mutable C-I allele	Pan, Y-B., Peterson, P. A.
Activation of Uq transposable element is likely a random event	Pan, Y-B., Peterson, P. A.
Mutant C-ID846627 had a deficiency distal to C-I	Pan, Y-B., Peterson, P. A.
R mutant alleles from mobile-element-containing populations	Pan, Y-B., Peterson, P. A.
Preliminary linkage data for recessive brown aleurone (brn1)	ran, 1-b., recerson, r. A. Stinard, P. S.
Dappled: a putative Mu-induced alcurone developmental mutant	-Stinard, P. S., Robertson, D. S.
Some thoughts about the nature of Mu-induced Yl mutants	Robertson, D. S.
A putative early Muminduced mutation Further evidence for Mutator activity in the male comptonivity and for differential activity	Robertson, D. S. 10
further criterice for nutleof becartely in the mare gametophyte and for orrestmenter detrin	Robertson, D. S. 10
Mendelian ratios in crosses of mutable Mutator-induced al mutants	Robertson, D. S. 11
Additional evidence on the correlation of somatic mutability and germinal mutator activity	y in <u>Mu</u> -induced aleurone mutants
The effect of inbreeding on the expression of mutability in al-Mum2	Roth, B. A., Robertson, D. S. 14
Results from a second series of inbreeding crosses of Mutator (Mu) stocks	Robertson, D. S. 17
AMES, IOWA and COLUMBIA, MISSOURI A new isozyme marker for the short arm of chromosome 6	Wendel, J. F., Beckett, J. B. 19
AUSTIN, TX Chiasma frequency in the distal 5% of the long arm of chromosome l	Maguire, M. P. 19
BALTIMORE, MARYLAND Analysis of several derivatives of the <u>a-m2</u> Spm insertion alleleKing	gsbury, J., Masson, P., Surosky, R., Fedoroff, N. 19
BATON ROUGE, LOUISIANA Tissue-specific hypomethylation of maize rDNA	Sachdev, V., Jupe, E., Zimmer, E. 23
BERKELER, CA Programmed periclinal divisions of epidermal cells during glume development	Harberd, N., Hake, S., Freeling, M. 23
Mutation rates from sodium azide treatments	Briggs, R. W., Bettendorf, A. R. 24
biologiation, indiana Do strong Ac2 alleles represent duplications or triplications of a single Ac element? Do transmosed Ac2 elements arise by extra replication of existing elements or by excision	Rhoades, M. M., Dempsey, E. 24
Bz reversions in the bz2-m Ac2 system	Rhoades, M. M., Dempsey, E. 25 Rhoades, M. M., Dempsey, E. 25
BOMBAY, INDIA Studies on a somatically unstable line	Allagikar, S. B., Pawar, S. E., Notani, N. K. 26
Differentiation and functional organization of the shoot apical meristem CAMPINAS, SAO PAULO, BRAZIL A summing up of the latence systems, latence-l stomatal control and linkages in chromosome	Johri, M. M. 26
	anda, L. E. C. de, Miranda, L. T. de, Brunini, O. 27
crosses of adapted standard translocations with Portugues Fasciado Allometic genetics: development of methods which perfit mapping of pop-Medelian unit see	Miranda, L. E. C. de, Miranda, L. T. de 29
Linkage between Ga-S and ol	Miranda, L. T. de, Miranda, L. E. C. de 31
Allometric genetics III: a universal mathematical solution for the calculation of recombin	nation values
Allometric genetics IV: calculation of recombination values in F2 of \underline{tr} and \underline{pd} with genetic	<pre>1c markers from chromosomes 1 to 6 Miranda, L. E. C. de, Miranda, L. T. de 32</pre>
Following the paths from wild to cultivated maize: a cytogenetic mine map	Miranda, L. T. de, Miranda, L. E. C. de 34
The prolamin polypeptides of maize and related grasses	Ottoboni, L. M. M., Arruda, P. 36
Fertilization by low numbers of pollen grains	Waldron, J. C. 36
Pollen transformation	Waldron, J. C. 36
Stability of alleles of Rp (resistance to Puccinia sorghi)	Pryor, A. 37
The effect of proline on the regeneration of maize callus lines	Ting Y C Schoolder S 34
Continued study on the meiotic chromosome behavior and fertility of anther culture-derived COLLEGE STATION. TEXAS	d plantsTing, Y. C., Schneider, S. 38
Partitioning the sources of abscisic acid found in developing embryosSmith, J. D. Cobb 1	R. G. Martil C. W. Hole D. J. Riskaw C. A. 36
Identification of slow rusting resistance to Puccinia	or or, haging of any more, or or, hearey, or at
polysora Underw. In inbreds and single crossesBailey, B. A., Schuh, W., Fro Identification of linkage groups controlling slow rusting in the Puccinia polysora/maize s	edericksen, R. A., Bockholt, A. J., Smith, J. D. 39 Interaction using reciprocal translocations
Morphological stages of embryo development in Tx5855	-Bailey, B. A., Smith, J. D., Fredericksen, R. F. 40 Fong, F., Smith, J. D. 40
COLOGNE, WEST GERMANY Studies on Ac-derived mPNA	nebal II Coursea II Iauf- 1 Ounting P (1
An initial functional analysis of Ac in tobaccoCou	upland, G., Baker, B., Schell, J., Starlinger, P. 41
Transcription of Adh1-2F11::Dg2	Simon, R., Starlinger, P. 42
Phenotypic assay for excision of the maize controlling element, <u>Ac</u> , in tobaccoBaker, B., Couple	and, G., Fedoroff, N., Starlinger, P., Schell, J. 43
Multiple transacting factors may be involved in the regulation of the sucrose synthase ger Werr, W., Bellma	ne ann, R., Springer, B., Joos, H-J., Starlinger, P. 43
Chromatin structure of the sucrose synthase gene	Frommer, W-B., Franken, P., Starlinger, P. 44
Mutator-induced PSII photosynthesis mutant is allelic to hcf3	Cook, W., Miles, D. 44
Mutator-induced mutation on 8L affects the chloroplast cytochrome bg/f complex	Cook, W., Hunt, M., Miles, D. 44

i

Location and designation of duplicate factors for orange pericarp, orpl and orp2 --Neuffer, M. G., Beckett, J. B., Wright, A. Gene expression in NCS2 mutant plants NCS2 mutants: ultrastructural observations --Feiler, H., Newton, K. 45 --Thompson, D., Newton, K. 45 --Han, C-D., Coe, E. --Han, C-D., Coe, E. --Larson, R. L. Further genetic study on involvement of the P locus in silk browning 46 Survey for inbreds carrying homozygous \underline{whp} Flavonoid 3-hydroxylase in aleurone 46 46 Barren-stalk-fastiglate, <u>baf</u>, chromosome 9S Linkage data for luteus-7, chromosome 9S <u>v30</u> (was <u>v*-8587</u>) linkage data, chromosome 9L Anthocyaninless-lethal, <u>anll</u>, chromosome 5S --Coe, E. H., Beckett, J. B. 46 47 --Coe, E. ---Coe, E. 47 --Coe, E. 47 Anthocyaniniess lethal, anti, chromosome IS Location of <u>nec2</u> on chromosome IS Computer programs for use in linkage analysis Lesl0, a new lesion mutant located near <u>v4</u> on chromosome 2L Publicly available RFLP clones --Hoisington, D. 47 --Hoisington, D. 48 --Hoisington, D. 48 49 ---Hoisington, D., Gardiner, J. --Coe, E. H., Hoisington, D. --Neuffer, M. G., Beckett, J. B. --Neuffer, M. G., Beckett, J. B. Toward unambiguous designations for loci defined by restriction fragment polymorphisms 49 Hyperploid and hypoploid selfs provide accurate arm location of duplicate factors Designation of new recessive mutants 49 50 Designation of new dominant mutants Location of dominant golden sheath on chromosome 9S Location of dominant male sterile on chromosome 4L --Neuffer, M. G., Hoisington, D. A., Bird, R. M. 50 51 -Neuffer, M. G. --Neuffer, M. G. 51 --England, D. J., Neuffer, M. G. --Rosenkrans, L., Polacco, M., Echt, C. Chromosome 8 linkage studies 51 Mutable cytochrome f/b6 mutant isolated in Spm background 52 Mof* is unmasked by two v24 mutations Inter-regional maize inbred evaluation report --Polacco, M. --Darrah, L. L. 52 52 CORVALLTS. OREGON A modified slot blot technique for use with nylon membranes Mutator-homologous sequences in normal lines and in somaclonal variants -Hazelwood, D., Rivin, C. 53 --Rivin, C., Harn, C., Chandler, V., Talbert, L. --Holmes-Baker, C., Grudt, T., Rivin, C. 53 54 ABA and a developmental switch in embryogeny FREIBURG, WEST GERMANY Binding of nuclear factors to upstream regions of zein genes GAINESVILLE, FLORIDA --Maier, U., Brown, J. W. S., Feix, G. 55 On gene symbolization for the second sucrose synthase enzyme --Chourey, P. 55 Cloning, immunoselection and characterization of cDNA clones of the two non-allelic sucrose synthase genes Transcriptional analysis of the mitochondrial gene URF13-T in T cytoplasm --Gupta, M., Chourey, P. S., Still, P. E. Genomic configurations of T, Wf9(N), and A188(N) mtDNAs adjacent to URF13-T --Kennell, J. C., Rocheford, T. R., Wise, R. P., Pring, D. R. GAINESVILLE, FLORIDA and ST. PAUL, MINNESOTA URF13-T --Kennell, J. C., Rocheford, T. R., Wise, R. P., Pring, D. R. 56 57 57 URF13-T codes for a 13kd polypeptide --Wise, R. P., Fliss, A. E., Jr., Pring, D. R., Gengenbach, B. G. 58 HYDERABAD, INDIA Characterization of accumulated compounds in recessive r-r --Satyanarayana, V., Reddy, G. M. 58 --Rao, K. V., Suprasanna, P., Reddy, G. M. --Suprasanna, P., Rao, K. V., Reddy, G. M. The analysis of aleurone protein patterns of <u>C-I</u> and pigment inhibition Initiation and maintenance of suspension cultures 58 58 ITHACA, NEW YORK 59 In vitro selection for methomyl resistance in cms-T --Kuehnle, A. R., Earle, E. D. JOHNSTON, IOWA Continued study of a defective WF9 cytoplasm, "wsp" --Duvick, D. N. 60 --Duvick, D. N. Defective cytoplasms from teosinte 60 Mapping the Css gene relative to the genes for $\frac{Sh1}{SN0DAR}$, USSR --Behrendsen, W., Blair, D., Grant, D. 60 Kinetic parameters of RNA synthesis in isolated mitochondria of different genotypes --Konstantinov, Yu. M., Lutsenko, G. N., Podsosonny, V. A., Mashnenkov, A. S. 61 LINCOLN, NEBRASKA Evidence for transposable element activity in Nebraska Stiff Stalk Synthetic --Osterman, J. C. 61 LLAVALLOL, BUENOS AIRES, ARGENTINA New cytological evidences for a basic number x=5 in the genus Zea --Naranjo, C. A., Molina, M. del C. 62 LOMAS DE ZAMORA and LLAVALLOL, ARGENTINA -Magoja, J. L., Palacios, I. G. Early expression of heterosis in diploperennial teosinte-maize hybrids Effect of perennial teosinte introgression on maize tassel traits 63 --Aulicino, M. B., Palacios, I. G., Pischedda, G., Magoja, J. L. 64 --Pischedda, G., Magoja, J. L. --Pischedda, G., Magoja, J. L. --Palacios, I. G., Magoja, J. L. Potential use of diploperennial teosinte germplasm for maize improvement Potential use of perennial teosinte germplasms for maize improvement 65 66 66 67 LONDON, ONTARIO, CANADA --Pareddy, D. R., Greyson, R. I., Walden, D. B. 69 Analysis of variability in plants produced with pollen from cultured tassels --Rees, C. A. B., Gullons, A. M., Walden, D. B. --Boothe, J. G., Walden, D. B. --Boothe, J. G., Walden, D. B. --Bommineni, V. R., Greyson, R. I. A comparison of the response of seedlings to heat shock, cadmium chloride and lannate Multivariate analyses of data from two-dimensional electrophoresis of polypeptides 69 70 Anther culture from stamens of the ears of anl 71 Polypeptide differentiation associated with maturation of organs on tassels and ears -Bommineni, V. R., Greyson, R. I., Walden, D. B., Atkinson, B. 71 --Zabulionis, R., Walden, D. B., Procunier, J. D. --Crowe, T. G., Walden, D. B. More oncogene-related sequences 72 Use of leaf discs to monitor protein synthesis under field conditions 72 MEADVILLE, PENNSYLVANIA and LONDON, ONTARIO, CANADA Effect of erythromycin on seedling growth, thermotolerance and synthesis of 52kD mitochondrial heat shock protein -Nebiolo, C. M., Walden, D. B. 73 MILAN. ITALY A cytological approach to the characterization of $\frac{dek1}{m}$ The effect of PEG on $\frac{pro1}{m}$ mutant The role of $\frac{Sn}{m}$ in the light-regulated activity of -Dolfini, S. F. 73 --Tonelli, C., Bertani, A. 74 --Consonni, G., Racchi, M. L., Shammah, S., Gavazzi, G. --Racchi, M. L., Pontoglio, M. 75 enzymes of flavonoid biosynthesis First results on the progeny of regenerated plants 75 Physiological components of yield --Camussi, A., Ottaviano, E., Basso, B., Pirillo, E. 76 Gene expression during male gametophyte development 76 --Frova, C. --Frova, C., Binelli, G., Ottaviano, E. --Sari Gorla, M., Villa, M., Ottaviano, E. --Viotti, A., Bernard, L., Pogna, N. E. --Bianchi, M. W., Viotti, A. HSPs: temporal onset in developing pollen and genetic variability in the sporophyte 76 Pollen fradiation and gene transfer Are there Mul sequences in B chromosomes? A role for DNA methylation in the tissue-specific expression of maize genes? 77 77 MILAN, ITALY and BERGAMO, ITALY Absence of restoration of <u>o6</u> (<u>prol</u>) endosperms with proline NASHVILLE, TENNESSEE 78 --Manzocchi, L. A., Soave, C. Inheritance of knob heterochromatin --Eubanks, M. 78 NORMAL, ILLINOIS A new improved FPG technique for detecting sister-chromatid exchanges in mitotic chromosomes NORTHFIELD, MINNESOTA --Chou, T-S., Weber, D. 79 Dosage analysis of the D8 allele for dwarfism --Staub, R. W., Laurenson, P. M. --Staub, R. W., Laurenson, P. M. 79 Consistent nondisjunction of B chromosomes in Black Mexican 80 OAKLAND, CALIFORNIA 81 --English, J., Ralston, E., Dooner, H. Corrections in the nucleotide sequence of Activator (Ac) PALO ALTO, CALIFORNIA Mutagenesis of tissue cultures Inheritance of the culture induction response --Wang, A. S., Hollingworth, M. D., Milcic, J. B. --Close, K., Ludeman, L. 81 83

NETTINE NETTI REVENUE LIVEL		
Talia patisal reunsitivania	Poetbig, S.	84
Dosage analysis of Tunicate	Poethig, S.	85
Corngrass: home again	Poethig, S.	85
RALEIGH, NORTH CAROLINA	Dird D M	85
The sweet butterscold smell of Zea	Bird, R. M., Modena, S. A.	85
Acp4 is the most distal marker on chromosome IL	Sisco, P. H., Wendel, J. F., Stuber, C. W.	86
The Sod genes of maize	Cannon, R. E., Scandalios, J. G.	86
ST. PAUL, MINNESOTA	I that we have a second s	07
A search for cytoplasmic restoration of genetic male sterility among regenerated plants and	a their progenyLee, M., Phillips, K. L.	87
Solit Lake CITY. UTAH	bocoon, or bi, bowers, or at	0.
A strategy for pinpointing and cloning major genes involved in quantitative traits	Helentjaris, T., Shattuck-Eidens, D.	88
RFLP mapping of cloned genes	Wright, S., Helentjaris, T., Kikuchi, Y.	89
SALT LAKE CITY, UTAH, CLEMSON, SOUTH CAROLINA and CANBERRA, AUSTRALIA		
with male fartility and/or toxin resistance in T cytoplasm	Fauron, C., Oin, J., Abbott, A., Brettell, R.	90
SLATER, IOWA and COLUMBIA, MISSOURI		
Delayed pollen development in maize x Tripsacum hybrids	Chang, M-T., Beckett, J. B.	90
Genetic effects of hypoploidy on kernel weight, plant height and leaf width	Chang, M-T., Coe, E. H., Beckett, J. B.	91
SRINAGAR, KASHMIR, INDIA	Jorobi P. N. Bhar B. K. Bhan M. K.	92
TALAN, SHANDONG, CHINA and HAMILTON, ONTARIO, CANADA	oconi, i w, blat, bi ki, blan, ni ki	
MMS induced aneuploidy in corn roots	Zhao, J-P., Davidson, D.	93
TIFTON, GEORGIA		222
Linkage between silk browning and cob color	Widstrom, N. W.	93
A new B-A translocation: TB-2Sa	Roht C.	94
Factors affecting expression of Lesl in leaves	Echt, C.	94
Root lesions in Lesi/Lesi seedlings	Echt, C.	95
Low frequency transmission of Lesl wtl gametes	Echt, C.	95
URBANA, ILLINOIS	Spraque C F	96
Dt6-Su-G13	Sprague, G. F.	96
yll and yl2	Sprague, G. F.	96
sh5	Sprague, G. F.	96
A new allele at the Y1 locus with pleiotropic effect	Sprague, G. F.	96
Miniature germ - <u>mg</u>	Chuebtal S. R. Steffensen D. M.	96
Some insights into the genetics of flowering time	Chughtai, S. R., Steffensen, D. M.	98
A correlation between knob number and leaf number - a counting mechanism	Steffensen, D. M., Chughtai, S. R.	99
Mapping genes for ear development	Steffensen, D. M., Chughtai, S. R.	99
VICTORIA, BRITISH COLUMBIA, CANADA	Styles F. D. Extendior B. Cooks O	100
An unstable factor for orange pigment	styles, c. D., Brianitat, B., Ceska, C.	100
Phase change involves a two-gene switching system	Galinat, W. C.	100
New evidence supporting multiple domestications	Galinat, W. C.	100
The use of Palomero Toluqueno (white rice popcorn) in sweet corn improvement	Galinat, W. C.	101
Inte origin of thick coo, eight to maize	Galinat, W. C.	101
Duplication of the nucleolus organizer in the genome of maize	Pasupuleti, C. V.	101
Cytological techniques for the study of maize chromosomes	Pasupuleti, C. V.	102
WILMINGTON, DELAWARE		102
Cloning or a <u>Dsl</u> =nomologous element at the <u>Al</u> locus Sequence obstratariation of the rbt controlling-element	sorrentino, J. J., Snepherd, N. S.	102
Sorrentino, J. A., O'Reilly, C., S	chwarz-Sommer, Zs., Saedler, H., Shepherd, N. S.	103
WOOSTER, OHIO		
A flint type endosperm gene	Dollinger, E. J.	103
YORKTOWN HEIGHTS, NEW YORK and OSSINING, NEW YORK	archang P C Unight D C	104
Gnemically induced alteration of ilotal sexuality	oneng, r. c., wright, b. c.	104
TI. ZEALAND 1987		106
IV. MAIZE GENETICS COOPERATION STOCK CENTER		109
V. MAPPING		114
VI. MAILING LIST		150
		150
		1.75
		1/1
XI. AUTHOR AND NAME INDEX		174

U

iii

SIA MEDICINE SONG Grant our children life and happiness. Send forth the good south winds. Send forth your breath over the waters that our world may be beautiful and our people may thrive. ----Far off, over there, Sun Father awakens, and climbs up his ladder leaving his resting place. May all complete life's long road, may all grow old. May our little ones know the sweet smell of the sacred breath of life. May all our children have maize that they may complete their journey. Sit down, remain here, we give our best gift, our best thoughts. We inhale the sweet smell of the sacred breath through our prayer plumes.

STORES STORES

I. FOREWORD

"By tradition, scientists are supposed to be objective and coldly analytical, but that view is nonsense. The best scientists convey enthusiasm and excitement and thus stimulate enhanced creative activity by their fellows." --P. H. Abelson, 1980

The data, techniques and tidbits on maize genetics in the notes in this News Letter represent for each of us the enthusiasm and openness that is the tradition among maize geneticists. The sharing of our field books, our observations and our notebooks in these pages is done with the specific understanding that the information here is not published information, and that it is not to be cited in publications without the consent of the authors.

Notes for the next issue (Number 62, 1988) should be in my hands by January 1, 1988. The writing and content should be brief and informal. Text should be in simple and efficient form, double-spaced so that it can be retyped efficiently. Tables, Figures and Charts must be compact, single-spaced, and ready for direct copying by the camera.

The U. S. Department of Agriculture and the Maize Genetics Stock Center again provided the resources needed for the assembly, compilation, production and distribution of this issue, and all of us in the Maize Genetics Cooperation appreciate the encouragement and support that is so essential for the compiling and sharing of information.

Shirley Kowalewski again skillfully edited and refined the copy and the proofs, in addition to keeping the year-round office tasks in order and aiding in screening of the literature for compilation. Mary Brazil once again produced and refined the literature with care, and Kathy Chappell and Chris Browne cheerfully and efficiently helped with assembling and other vital tasks. The University Printing Services, including Yvonne Ball and Dale Kennedy and their careful staff, efficiently and carefully made sure that the planning, typesetting, composition and printing were done promptly and well.

Dave Hoisington in particular, among my USDA and University of Missouri colleagues, continues to produce his expertly derived data compilations, the impressive working maps, and the computer trickery, as well as advice and ideas. Chang-deok Han aided with refining of Recent Maize Publications and with proofing, and I appreciate the help of Allen Wright, Evelyn Bendbow and Mary Polacco with proofing.

Mitochondrial mapping data were generously compiled again by David Lonsdale, and the impressiveness of that genome characterization challenges the nuclear maizoids to match the mitochondriacs.

The Maize Genetics Conference, held in March each year, will be in Madison, Wisconsin, in 1988. Information about the Conference can be obtained from Oliver Nelson, who is making the arrangements. His address is listed in the revised Mailing List in this issue.

Symbol Clearing House: Earl Patterson, who has now taken on the oversight of the Maize Genetics Stock Center, has proposed to me that the responsibility of the Clearing House for symbols should transfer to my hands. After some arguments and scars, I have told him I am willing to serve in that role for the present. Since Earl will not be so busy now, please see the list of stocks not in the collection, compiled by Dave Hoisington (Mapping Section), and send any of the needed stocks to the Stock Center if you have them.

II. REPORTS FROM COOPERATORS

ALMORA, U.P., INDIA I.C.A.R.

Preliminary observations on drought tolerance in Sikkim Primitive maize

The existence of primitive types of maize cultivars possessing high degrees of prolificacy (4 to 8 ears/plant) in the Northeastern Himalayas of India has generated considerable interest among the maize workers with regard to the origin and evolution of the maize plant. Recently, Sachan and Sarkar (1986), on the basis of extensive studies carried out on such primitive types of maize, have concluded that Sikkim Primitive maize is the same as the pre-Chapalote, pre-Nal-Tel and prehistoric wild corn of Mangelsdorf. In addition to a subject of interest for origin and evolution, Sikkim Primitives have considerable utility as a source of prolificacy, pest resistance, and drought tolerance due to their long history of survival against the vagaries of nature.

During Kharif 1986, fifteen primitive types collected from the Northeastern Himalayan region of the country were grown in a breeding nursery under rainfed, highfertility conditions at the experimental fields of the Vivekananda Parvatiya Krishi Anusandhan Shala, Almora, situated at 1350 m a.s.l. Visual observations on drought tolerance were recorded on a 1 to 5 scale (1 no wilting, 5 all leaves wilted) on the sixteenth day of a twenty-day drought spell that occurred from 21st August to 10th September. The maize crop in the adjacent fields was severely wilted due to drought. Most of the materials in the breeding nursery also exhibited severe symptoms of moisture stress. However, of the fifteen Sikkim Primitive collections M1 and Murulia, with a score of 1.0, were highly tolerant to drought conditions as compared to S44 and S2, which had a score of 4.0 & 3.0, respectively, and showed severe signs of wilting. In the rest of the collections the tolerance was of intermediate type (1.5 - 2.0). These observations indicate that the Sikkim Primitive maize can be a potential source for drought tolerance in maize breeding programmes. However, the preliminary observations need further confirmation.

V.P. Mani, H.C. Jotshi and K.D. Koranne

AMES, IOWA Iowa State University

c2-m826021—An autonomously controlled allele at the c2 locus

c2-m826021 is an unstable c2-m allele that originated in an isolation plot (MNL 57:2) containing genotypes with En. The general pattern of this allele is very late in timing, though occasional early sectors appear. The frequency is largely a 6aa-type (very late-near single cell, but frequent—Reddy and Peterson, MGG 194:124), though this medium high frequency is not strictly heritable.

In tests of specific control, it has been confirmed that the control of mutability is autonomous. In 31 test crosses, the mutability cosegregated with the c2 locus. The frequency of colorless types ranged from .4% to 2.1% among eight of the 31 crosses. Two examples of this cross:

		Colored	spotting	cl	Total
84	1001-1/0707-6	255	273	4	532
84	1002-1/0709-7	263	236	0	499

This demonstrates the autonomous control of the mutability. Though En is strongly implicated, additional tests are needed for confirmation. The alternative of numerous En to accommodate the incidence of colorless segregants would require from 4 to 5 En, which is not applicable in this experiment.

Ulla Niesbach-Klosgen and Peter A. Peterson

c2-m1: the frequency of revertant colored versus colorless derivatives (cont.)

In a previous report (MNL 60), the discrepancy between the frequency of colored vs. colorless derivatives of this allele was described. With the revelation that the Spm of this autonomously mutating allele lies in the promoter region support is provided that excisions in the promoter region are such that colored derivatives are more likely than colorless. This would indicate that possibly excisions leading to base pair alterations in the promoter region are more likely to be tolerated and thus yield wild type products despite a change in the fidelity of the gene sequence as opposed to those changes in the structural part of the C2 gene.

Peter A. Peterson

Deficiency C-Sh-Bz-857003

In an isolation plot of C-I Sh Bz Wx En \times En C sh bz wx (Cross 1), a kernel with a shrunken, bronze phenotype was isolated. This would appear to be a deficiency for C-I Sh Bz. There is no male transmission of this chromosome segment. In crosses of this deficiency by c-m(r), the resulting kernels are colored with some colored to colorless sectors. This mutation deleted shrunken and bronze action as well as that of C-I but the colored phenotype from the c-m(r) cross indicates that this C can complement with the c-m(r) allele. The colorless sectors are either a reversion to C-I or a loss of the C component.

Peter A. Peterson

wx-857027

Another mutant from Cross 1 (preceding report) was wx-857027. Though a number of En-related wx mutants have appeared in these crosses, wx-857027 does not respond to En. This is verified by its non-mutability and that it does carry En based on a transactive test with an a-m(r) allele that is responsive to En. This wx is not a wx-m(r) allele.

Peter A. Peterson

C-Im857101 - an unstable C-I allele responsive to En

This is an *En*-responding *C-I-m* allele arising from a population as in Cross 1 (preceding report). This conclusion is based on results from crosses of C2/c2-m2, *C* wx-m8 × C2, *C-Im*857101 Wx/C-Im857101 wx. Colorless

(or palish) and sectored (colored to colorless) were isolated. Of the 28 wx sectored kernels tested, all showed wx to Wx. This indicates that the C to C-I sectoring is controlled by En.

Peter A. Peterson

a2-m55064 - an autonomously mutating a2 allele

In crosses such as $a2\text{-}m55064\ Bt/a2\ bt \times a2\ bt$, an excess of colorless-round kernels is found. This indicates either one of two sources of these kernels. Either this a2-m is controlled by several segregating En (3 or 4) or this a2-m is autonomously mutating and gives rise to a high frequency of colorless derivatives. Typical data are given in Table 1. A means of distinguishing between these two options is to test the colorless-round segregants ($a2\ Bt/a2\ bt$) that appear in greater than expected frequency. In tests of five colorless-round progeny of crosses similar to 86 4450-21 \times 5134 (Table 1), none contained an active En as determined from a test with the En tester a2-m(r). In another test of a sib family that arose from $A2\ Bt/a2\text{-}m55064\ Bt \times a2\ bt$, none (8/8) of the colored-round progeny from this cross showed the presence of En.

Table 1. From a testcross of fine types $a2 \cdot m Bt/a2 bt$ (fine) $\times a2 bt/a2 bt$) both fine and coarse types appeared in the progeny. Both these sib types, coarse (864450) and fine (864452) were testcrossed and the progeny types are given (the colorless brittle progeny are not given).

		Round						
	Coarse	fine	coarse	colored	colorless			
86	4450-21 x 5134	0	125	11	34			
	-23×5134	3	147	4	15			
	Fine							
86	4452-24 x 5133	62	64	3	11			
	-25 x 5133	43	39	5	12			
	~27 x 5133	101	100	1	13			

Table 2. Testcross of fine types - a2-m Bt/a2 bt (fine) $\times a2$ bt/a2 bt.

				fine	COATRE	colored	colorless
86	4449Y-24	x	5134	26	25	0	4
	-25	x	5134	61	77	7	11
	-27	x	5134	71	74	0	7
	-28	x	5134	120	101	4	15

Another feature of this allele is the presence also of a "fine" factor. This "fine" factor suppresses the early mutability of the *a2-m* allele in giving a "fine" pattern (late and many). Further, this same suppressive feature of the "fine" factor manifests itself in a lower incidence of colored and colorless derivatives among testcross progenies of plants arising from "fine" kernels. This is evident in both Tables 1 and 2.

It is evident that the fine factor segregates independently and affects the mutability of the autonomously mutable a2-m. Note also in Table 1 (the 4450-23 progeny) that fine types arise out of progeny of the coarse testcross.

Peter A. Peterson

Round

a2-m668140 - a basic pale allele that is modified in mutability expression by a fine factor

This mutable allele is transactivated by an independently segregating En. In the absence of En, this allele shows a light pale phenotype in the aleurone. With En, the kernel phenotype is a coarse, early mutating type with a colorless background. This indicates that this allele is a2-m(r-pale) responding to En to yield coarse mutability. In backcross progeny kernels with $[a2-m(r-pale) Bt/a2 bt \times a2 bt/a2 bt]$ a changed mutable phenotype arises that has a very late fine mutability pattern. In further tests of these exceptional kernels, a single factor modifying the coarse expression of the a2-m(r-pale) can be identified. The segregation pattern indicates that the "fine factor" (F) does not have the transactive En excision function but can modify the En that causes the coarse expression. The hypothesis for this series of interactions with a2-m(r-pale)is as follows:

En	F	Phenotype					
+	+	= fine mutability					
+	-	= coarse mutability					
-	+	= pale - no mutability					
5 - 5	5	= pale - no mutability					

The F factor is similar in activity to other modifiers, as *En-Malt*.

Peter A. Peterson

En-controlled I element inserts with the C-I allele: C-Im857059 and C-Im857062

C-Im857059 was uncovered in an isolation plot containing the cross C-I Sh Bz Wx/C-I Sh Bz Wx En \times C sh bz wx/C sh bz wx. This mutant is unstable and has an I insert that is under the control of En. This was proved in several ways but one example will be given. Sectored kernels were crossed by a tester containing c2-m2 and wx-m8, alleles responsive to En or Spm, C-Im Sh Bz Wx/C sh bz wx \times c2-m2 wx-m8, and sectored kernels obtained from this cross were again crossed by c2-m2 wx-m8. Colored, sectored, pale, and colorless kernels are obtained among the progeny and are tested for the wx phenotype. The wx mutability is from wx-m8 with En.

The colored are from the C Sh Bz wx-m8 chromosome. The sectored and pales are from the other chromosome (C-I Sh Bz Wx) with the wx phenotypes arising from crossovers. All the sectored show wx mutability; none of the pales show wx-mutability (Table 1).

Table 1. Test of *En* control of *C-Im857059*: Progeny types from cross tested for *En* presence with the *wx-m8* allele.

	Colored			Se	ctored			Pale			c1		
Ear	Hx.	<u>wa</u>	WX to Wx	Wx	¥X.	WX LO WX	Wx	WX	wx to Wx	Wx	<u>WX</u>	Wx to	¥x
#1	64	60	67	86	1	18	49	57	0	2	0		0
#2	75	27	87	97	0	26	23	21	0	5	0		2
#3	78	32	104	140	0	44	25	24	0	5	1		3

The conclusion from this analysis is that the pales represent the C-Im(r) allele without En. The sectored are the same allele with En. Thus, the pales are suppressed somewhat in their color-suppressive capacity and these represent an I insert in the C-I allele responding to En but not completely abolishing the suppressive effect of C-I. In summary,

Pale = C - Im(r)/C no En (none show wx-mutability)

Sectored = C - Im(r)/C En (Excisions release the modification of the color suppressing potential); all show wx-mutability.

Colorless = $C - Im(r)/C - I - m(r) \pm En$

Peter A. Peterson

C-Im857062

This is also an En controlled C-Im(r) allele. When sectored kernels were crossed with the al En-tester, a-m(r)/a-m-1, sectored kernels were obtained and again crossed by a-m(r)/a-m-1, yielding sectored and colored progeny. When these were separated and again tested, the results of these tests were:

	With En	No En	Total
Sectored	11	0	11
Colored	0	10	10

This allele as judged from tests on the En-tester responds to En. Both alleles are En-responsive and represent I inserts into C-I.

Ch. Jayaram and Peter A. Peterson

The Uq content of several breeding populations

Several maize breeding lines and populations were screened for the transposable element Uq. An isolation plot was used in which the lines of interest (assumed to be c/c) were detasseled and pollinated by a c-rug tester. Resulting ears on the detasseled plants were heterozygous for c and c-rug and the presence, absence and number of Uq could be determined. The following populations contained Uq elements:

- Hays Golden (Gardner, C.O., 1976. In Proc. Int. Cong. Quant. Genet., E. Pollak et al., eds., Iowa State Univ. Press. Pp. 475-489).
- Iowa Long Ear (Cortez-Mendoza, H. and A.R. Hallauer, 1979. Crop Sci. 19:175-178).
- Iowa Stiff Stalk Synthetic (Hallauer, A.R., W.A. Russell, and O.S. Smith, 1983. Stadler Symp. 15:83-104).

BS11 (Hallauer, A.R., Personal communication).

- Lancaster and Kolkmeier (Walejko, R.N., and W.A. Russell. 1977. Crop Sci. 17:647-651).
- Illinois Oil and Protein Lines (Dudley, J.W. 1976. In Proc. Int. Cong. Quant. Genet., E. Pollak, et al., eds., Iowa State Univ. Press. Pp. 459-473).

Jean Cormack and Peter A. Peterson

Test for presence of controlling elements in populations

Tests were conducted to evaluate the presence of controlling elements in 'Iowa Stiff Stalk Synthetic' (BSSS) population, the original inbred lines for BSSS population, inbred line derivatives of BSSS population, and Lancaster populations of different sources.

Mrh element was the most prevalent among the original inbred lines. It was also exposed in two cycles of selection, however, it was not recovered in the derivative inbred lines.

Cy element expressed low activity among original inbred lines that exhibited mutability. This pattern was carried through two cycles of selection and did not appear in the inbred line derivatives of BSSS population.

Uq element was uncovered in only one original inbred line and was channelled through cycles of selection and inbred line derivatives of BSSS population. The failure to uncover the elements Mrh and Cy in two cycles of selection could be due to sampling or those elements were lost during the recombination process.

Among nine Lancaster populations tested for the presence of elements, six exhibited Uq mutability, one the Cyelement, one the En element, and none with the Mrhelement.

From these results the Uq element was the most prevalent in BSSS and Lancaster populations.

Missae Karasawa and Peter A. Peterson

Ten mutant alleles at the C locus: complementation potential

It is believed that two different alleles which otherwise lack the potential to produce color by themselves, might complement each other and will be able to produce color in the aleurone tissue of maize. According to this proposal for complementation, each of these two different alleles would be expected to produce a partial transcript because of the placement of the transposable element insert in their exons, which thereby would contribute to the production of a complete gene product.

In the present study 10 different mutable alleles at the C locus were used. Nine have either En or I of the Ensystem and the tenth has the ruq of the Uq system. The alleles are c-m611702, c-m641963, c-m655208, c-m655292, c-m655320, c-m641936, c-m655437, c-m655370, c-m641905 (all En mutants) and c-m816666 (Uq system). All have a spotted phenotype in a null (colorless) background. (Other c-mutable alleles which have the same phenotype but do develop color during germination, in the light, have not been included in the diallelic crosses because the present study was aimed at observing whether there is any color development and thus complementation).

Kernels of the above ten c-mutable alleles were crossed to each other to create 45 different diallelic combinations (Figure 1). Approximately 20 kernels from each of these

Figure 1. Color development in developing see	edlings among
10 mutable alleles in a diallel series. A, B, C,	etc. represent
the different alleles.	

	c-m										
		•	P.	*						·	
	En-1/En										
A	61 1702			-	٠	-	sip			-	٠
в	64 1963		-	-		-	-		-		*
с	65 5208	14	(\mathbf{x})	-	sip		-	\sim	-		#iş
D	65 5292	sip		#íp			-			-	=1
Е	65 5320	-	sip							sîp	***
F	64 1936		sip	-	*		-		-	-	s \$ 1
G	65 5370	-	aip	sip	-	sip					
H	64 1905	sip		-	sip	-	÷				
1	65 5437		-	8	-	•	-	٠	-	-	÷
	Uq										
3	81 6666	-	sip				-		sip	-	\sim

Legend:

color development

no color development light color development kernels from one car whow color while from other o colorless. This would be an inconclusive results. of the same cross was

sip = Study in progress

Each disllelic type was crossed (reciprocally). ex A x B B x A 50 45 x 2 = 90

combinations have been germinated under light to observe color development in the aleurone. Very little color developed. Only 15 kernels developed a light color while the rest were without color. Further studies are in progress to confirm the above observations.

Ch. Javaram and Peter A. Peterson

C-Im846079: a highly mutable C-I allele

A highly unstable mutant allele, C-Im846079, has been rescued from a mottled-like kernel isolated from a population containing a Cy transposable element.

Results from confirmation tests and further genetic tests have indicated that the exceptional mottled-like phenotype showing heavy sectoring of colored cells in a colorless background is heritable. It is controlled by the mutant allele C-Im846079, very likely under an autonomous mode.

Yong-Bao Pan and Peter A. Peterson

A survey of active Uq elements in maize inbred lines by the use of c-ruq tester

The c-rug tester was used to probe active Uq element in 11 inbred lines and 3 waxy isogenic lines. These lines are Hy(Wx), Hy (wx), M14(Wx), M14(wx), B14(Wx), B14(wx), B37, B73, B78, B80, B70, C103, C123, and 187-2. They were known to be homozygous for the recessive c allele. Examination of the progeny kernels of these inbred lines crossed with the c-ruq tester has shown the following results: 1) All these inbred lines lack an active Uq; 2) The c-ruq allele does not "slip" at all in any of the 34,631 colorless kernels derived from 158 reciprocal crosses. This is in contrast to the situation with *a*-rug that generally gives rise to 1-spot or sector of spotting at a frequency less than 1% (Peterson and Friedemann, Maydica 28:213-249, 1983; Pan and Peterson, MNL 60:5-6, 1986). This suggests that the occasional Uq activity observed in these two studies might originate from the rug receptor element at the A locus.

Yong-Bao Pan and Peter A. Peterson

Activation of Uq transposable element is likely a random event

In order to understand whether the phenomenon of Uq activation (85 sectored) (MNL 60:5-6) was a random event or whether there was a specific factor in the genomes of sectored kernels that stimulated Uq activation, the following crosses were tested.

The F1 and BF1 progenies of the 4 inbreds that had been tested previously by the *a*-ruq tester for Uq activity were crossed both by 85 sectored genotypes(homozygous for *R*) and onto *a*-ruq tester. In addition, 187 plants from 85 sectored and 67 plants from 85 colorless sib kernels were crossed by *a*-ruq tester. If the activation of Uq is not a random event, we would expect a higher frequency of generating sectored kernels in crosses involving the 85 sectored than involving *a*-ruq tester due to the enhancement effect of the factor selected. On the other hand, if the process of Uq activation is random, no difference would be found between the two types of crosses.

Results from this study have indicated the following: a) The Uq activity seen in sectors of spotting in the aleurone layer of the 187 kernels was not transmitted; b) Apparently_lower frequency of sectored kernels was seen in (F1 or BF1 of B70, C103, C123) \times 85 sectored than onto *a-ruq* tester. Frequency of sectored kernels in F1 or BF1 of 187-2 by 85 sectored was slightly higher or the same than onto *a-ruq* tester; and c) Similar frequencies of sectored kernels were observed in progenies derived from crosses by *a-ruq* tester of 85 sectored and of 85 colorless sibs. All these suggest that the activation of Uq transposable element is likely a random event.

This hypothesis is supported by the following observations. First, colorless kernels with very large area of sectoring did not produce a higher frequency of sectored kernels when crossed with a-ruq tester. Second, 3 sectored kernels were found in a population of 2,458 colorless kernels from crosses between a-ruq and a sh (no Uq) testers. Third, sectors of spotting in an otherwise colorless aleurone were very often encountered in the development of an a-ruq tester with sh and bz markers.

Yong-Bao Pan and Peter A. Peterson

Mutant C-ID846627 had a deficiency distal to C-I

One variegated kernel was recovered from an En isolation plot (C-I Sh Bz Wx/C-I Sh Bz Wx, $En/En \times C$ sh bz wx/C sh bz wx) that showed sectors of color or bronze in a colorless background. Later it was found the mutant had a deficiency and the C-I chromosome carrying the deficiency was not transmissible through pollen. This mutant has been designated C-ID846627.

Table 1. Linkage test on mutant C-ID846627.

Plant	Class	ification	of proge	my kerne	els		
number	st	runken		TO	und		Total
	bronze	colorless	colored	bronze	colorless	colored	200
1. by Cshbzwx	tester:						
84g200-1	49	1	0	0	52	3	105
-2	133	2	1	0	131	1	268
-3	66	0	0	0	28	1	95
Grand total	248	3	1	0	211	5	468
2. on <u>Cshbzwx</u>	tester	Ē.					
84g200-1	308	0	4	0	5	12	329
-2	314	0	2	0	4	1	321
-3	287	0	0	0	2	6	295
Grand total	909	0	6	0	11	19	945

A preliminary linkage test was done and the results shown in Table 1 indicate that the deficiency probably starts at about 1.2 map units distal to the C-I locus. However, this value is only based on a few crosses on 3 plants. An additional study involving adequate numbers of plants is underway.

Yong-Bao Pan and Peter A. Peterson

R mutant alleles from mobile-element-containing populations

Thirty-seven R mutant alleles have been isolated from several maize populations containing different types of mobile elements. They can be divided into the following 3 groupings based on the results derived from confirmation tests and tests for genetic instability:

- 1. Genetically stable R mutants
 - a) Those from Uq-containing populations: r-784201, r-784214, r-817106, r-817113, r-817120, r-817123, r-817206, r-817371, and r-817382;
 - b) Those from Cy-containing populations: r-846055, r-846058, r-846066, r-846067, r-846068, r-846074, r-846085, r-846095, r-857332, r-857336, and r-857343;
 - c) Those from *En*-containing populations: *r*-826143, *r*-857299, *r*-857305, and *r*-857325; and
 - d) Those from Ac-containing populations: r-844523, r-846142, and r-846155.
- Putative mutable R mutants: r-826013, r-826014, r-826016, r-826017, r-826022, and r-826026. These were isolated from one En-containing population.

- 3. Promising R mutable alleles
 - a) One from Uq-containing populations: r-846096;
 - b) Three from Cy-containing populations: r-857345, r-857349, and r-857350.

Further experiments are in progress on putative and promising R mutable alleles.

Yong-Bao Pan and Peter A. Peterson

Induction of *Uq* activity and a *mn*-type mutant by 5-aza-2'-deoxycytidine

DNA modification, particularly methylation, has been found to be inversely correlated with gene activity (for review, see Doerfler, Ann. Rev. Biochem. 52:93-124, 1983). In maize, the loss of Mu1 activity is due to an increasing level of DNA methylation of the element (Chandler and Walbot, PNAS 83:1767-1771, 1986). Our finding on the activation of the Uq transposable element in somatic tissues of progeny kernels of four inbreds lacking Uqactivity (MNL 60:5-6) has raised such a question as to whether the activated Uq comes from the ruq receptor element at the A locus or whether it is a methylated inactive Uq that becomes active.

One experimental approach to address this question is to use the deoxycytidine analog 5-aza-2'-deoxycytidine. The roots of germinating seedlings from 34 sectored BF2 progeny kernels of the 4 maize inbreds were dipped into a 30 uM 5-aza-2'-deoxycytidine solution for 72-90 hours, transferred into seed pots in the greenhouse, and grown for another 2 weeks before transplanting into the field. During this period, death of some root tips and folding of the leaves were common. Four seedlings died of the treatment, the rest were recovered and looked normal. These plants, together with 15 plants derived from the same source as a control, were crossed with a-rug tester reciprocally. Examination of the progeny ears gave rise to the following results: One treated plant was totally sterile; another treated plant had one Uq element being activated that appeared to cosegregate with a mn type mutant gene, designed as mn-866248U. It was not transmissible via pollen:

-	Standard						
Ear	cl	spotted	1-spot	cl	spotted	1-spot	Total
866248U/a-rug	129	0	3	3	143	1	279
a-ruq/866248Ú	322	0	6	0	0	0	328

A similar event of Uq activation happened in a single kernel at a frequency of about 6.1×10^{-6} in a separate experiment without any treatment. When the plant 866201X derived from this kernel of Uq spotting was crossed by an *a-ruq* tester, approximately 50% of the progeny kernels were miniature and Uq spotted and the other 50% were normally sized and not Uq spotted. However, tests are not available on its transmission through pollen. This *mn* mutant gene is named *mn-866201X*.

These two events are unrelated by immediate parental source and therefore represent two independent events.

Yong-Bao Pan and Peter A. Peterson

Preliminary linkage data for recessive brown aleurone (*brn1*)

As has been previously reported (MNL 60:6-7, 1986), brown-1 (brn1) is a recessive brown-kerneled seedling lethal mutant located on the short arm of chromosome 3. We have now collected linkage data with respect to d1, Lg3, and cl1, which would suggest that brn1 is located in the vicinity of cr1 on chromosome 3. Our linkage data are reported in Tables 1 and 2. All crosses were set up to test linkage in repulsion.

Table 1. Linkage data for brn1 d1 Lg3, from the testcross $+ d1 Lg3 / brn1 + + \times + + +$.

	Parer	ntala	Recombinants							
Fantly	• d 4	b	0 · L	• 0 •	DOL		• • L	bd .		
1216	11	16	2	5	3	5	0	3		
1217	16	12	3	4	8	2	0	1		
1218	13	21	5	6	2	2	0	1		
1219	18	13	3	3	2	5	0	0		
1220	17	13	5	-	5	10	0	0		
1221	15	15	6	2	1	4	1	1		
1222	16	10	5	2	4	5	0	0		
1223	17	10	- 3	6	4	2	0	0		
1605	13	11	з	14	2	1.	0	0		
1605	3	16	5	5	2	3	0	1		
Totals	139	127	40	41	33	39	I.	7		
% Recomb	ination t	orn1-di	- 18.7 -	1+9						
% Recomb	instion b	orn1-Lg3	= 39.6	2:4						
% Recomb	ination o	11-Lg3 =	20.8 +	2.0						

Table 2. Linkage data for brn1 - cl1.

anily	brn1-Cl1	Brn1-cl1	Brn1-C11	brn1-cl1	
232*	29	3	13	1	
233*	3	36	2	11	
1234	29	0	17	1	
235	0	25	0	20	
1236	25	1	21	a	
1237	2	28	0	13	
festcross:	(brn1 Cl1 /	Brni cli)	(Brnl Brnl (<u>11 C11</u>	
Family	brn1-011	Brn1-c11	Ben1-Cl1	brn1-011	
1238	14	13	4	10	
1239	18	8	2.0	7	
1609	11	17	7	7	
1610	8	17	8	в	
Totals	139	148	82	78	n = 447

Families 1232-1237, even numbered families, yellow weeds planted, Families 1232-1237, odd numbered families, pale yellow meeds planted.

In order to test linkage with d1 and Lg3, we crossed a d1 Lg3 stock onto the first ears of heterozygous brn1 plants whose second ears had been selfed the day before. Kernels from the first ears of plants whose selfed second ears segregated for brn1 were planted the next season, and the Lg3 plants were selfed and outcrossed to a standard line carrying the wildtype alleles. Kernels from the outcrosses of plants which were liguleless, and whose selfs segregated for d1 as well as brn1, were planted in our selfing block, scored for Lg3, and self-pollinated. The resulting ears were scored for brn1, and kernels from each ear were planted in sand benches and the seedlings scored for d1. The data collected from this linkage test are presented in Table 1.

To test linkage with cl1, heterozygous brn1 plants were selfed and outcrossed to homozygous $cl1 \ cl1 \ Cl3 \ Cl3$ plants. Kernels from these crosses were planted, and the plants selfed and outcrossed to either (1) $cl1 \ cl1 \ Cl3 \ Cl3$ plants, or (2) a standard line carrying the wildtype alleles. Kernels from the outcrosses of plants whose selfs segregated for brn1 and cl1 were planted in our selfing block and the plants were self-pollinated. For cross (1), the kernels planted in the selfing block were first separated on the basis of whether they were yellow ($Cl1 \ cl1$), or pale yellow ($cl1 \ cl1$), before they were planted. This is the basis of the data reported in the top half of Table 2. It should be noted that a fair amount of heterofertilization occurred (about 5%), but this was readily recognized in the selfed ears, and did not influence the linkage results. For cross (2), the kernels were simply planted in rows, since all kernels were yellow. The data for cross (2) are reported in the bottom half of Table 2.

The data from the three point cross with d1 and Lg3(Table 1) would place brn1 at around 19 units from d1, and 40 units from Lg3 on chromosome 3. The data from the two-point cross with cl1 (Table 2) place brn1 at around 36 units from cl1. Thus, on the linkage map of chromosome 3, brn1 would be placed at position 13 (with respect to d1), position 17 (with respect to Lg3), or position 16 (with respect to cl1). These positions map very closely to cr1, which is located at position 14. Since d1 is located closer to brn1 on chromosome 3 than are Lg3 and cl1, the placement of brn1 at 13 units is probably the most accurate. We will be collecting more linkage data with respect to d1, as well as g2 and possibly ra2 within the next year.

We attempted to map brn1 with respect to cr1 and d1in a three point cross according to the following scheme: Homozygous cr1 cr1 d1 d1 plants were crossed onto the first ear of a heterozygous brn1 plant whose second ear had been selfed the day before. Kernels from the first ear of plants whose selfed second ears segregated for brn1 were planted the next season, the second ears selfed, and the first ears pollinated by a homozygous cr1 cr1 stock obtained from the Maize Genetics Stock Center, which was indicated as being homozygous wildtype for d1. The kernels from the first ears of plants whose second ears segregated for brn1 and d1 (cr1 could not be scored in the seedling bench) were planted in our selfing block, the plants grown to maturity and scored for cr1, and the plants self-pollinated. The selfed ears were to be scored for brn1, and planted in the seedling bench to be scored for d1. As it turned out, the plants in the selfing block segregated for a dwarf, as well as crinkly, indicating that the cr1 stock used in the second generation cross was heterozygous for d1. In addition, the crinkly trait was nearly impossible to score because there was a continuous range of variation in the plants from very crinkly to very smooth leaves. The cr1 stock also was in a purple background, which made the selfs difficult to classify for brn1. We will try to obtain a different cr1 stock, hopefully in a colorless aleurone background, in order to complete the linkage tests. We would be very grateful for advice on classifying for the crinkly trait.

The following diagram indicates the location of *brn1* on chromosome 3, based on our present linkage data:

Dappled: a putative Mu-induced aleurone developmental mutant

All Mu-induced mutable aleurone genes found to date in our studies with Mu have had a very characteristic spotting pattern of small spots, indicative of late events. Although there is some variation from mutant to mutant in the size of the spots, they are nonetheless always the result of late events. Large, irregular pigmented spots, which would be expected from early events, are rarely observed.

From our 1979 a2 $bt \times$ purple Mutator isolation plot, we recovered many seeds that had sectors of purple and yellow aleurone. These seeds did not have the typical Mu aleurone mutable pattern, but instead had varying sectors of purple and yellow. A couple hundred such seeds with different amounts of sectoring were planted in 1982 and self pollinated. All but a very few segregated for purple Bt and yellow bt seeds. Thus, the original sectoring was probably due to chromosome loss or somatic mutation within the endosperm. However, one plant from a sectored seed segregated for a mutable aleurone pattern we have called dappled (Dap). This mutable pattern is not typical of previous Mu-induced aleurone mutants. Dap seeds are yellow with sectors of purple tissue of variable sizes and shapes (Figures 1 and 2). Dap seeds are frequently smaller than their purple sibling seeds, and are sometimes extremely defective (Figure 2). There appears to be an

Figure 1. Close-up of seeds near the base of a dappled ear. Note that there are large and small *Dap* seeds, and that there appears to be an inverse relationship between seed size and the amount of mutant tissue present. Very small, defective *Dap* seeds are not seen in this picture because they are usually overgrown by more fully developed seeds.

Figure 2. Close-up of dappled seeds.

imperfect correlation of this defective phenotype with the extent of yellow areas on the seeds. The greater the amount of yellow tissue, the smaller the seed. Frequently, the region of the ear that matures first will have a higher concentration of dappled seeds than the tip of the ear (Table 1); these dappled seeds have more yellow tissue

Table 1. Distribution of dappled seeds on ears from heterozygous dappled plants.

Dappled parent	parent	See hal	Seeds from the base* half of the ear			s from t of the	he tip* ear	Tota %	
		P1	Dap	% Dap	P1	Dap	% Dap	Dap	
633 - 1	Pl aleur	84	56	40.00	218	32	12.80	22.5	
- 2		57	44	43.56	85	47	35.61	39.0	
- 3	cl	34	8	19.05	43	22	33.85	28.0	
- 5	P1 aleur	84	61	42.07	169	35	17.16	27.5	
- 6	0	84	41	32.80	145	68	31,92	32.2	
- 7		80	63	44.06	154	33	17.65	29.0	
634 - 1		57	22	27.85	59	35	37.23	35.9	
- 2		42	22	34.38	76	20	20.83	26.2	
- 3		41	28	40.58	106	41	27.89	31.9	
- 4		43	7	14.00	85	65	43.71	36.3	
- 5	al	41	29	41.43	184	46	20.00	25.0	
- 6	Pl aleur	71	5	6.58	98	53	35.10	25.5	
- 7	-	80	10	11.11	129	71	35.50	27.9	
- B	u :	78	62	44.29	135	51	27.42	34.6	
635 - 1		97	88	47.59	159	88	35.63	40.74	
- 2	al	37	43	53.75	102	66	39.29	43.9	
- 3	Pl aleur	98	76	43.68	192	41	17.60	28.7	
- 4	c2	66	41	38.32	137	47	25.54	30.24	
- 6	al	48	30	38.46	79	15	15.96	26.1	
- 7	- 4	102	75	43.37	145	50	25.64	33.60	
Totals		1324	811	37.99	2500	927	27.05	31.2	

 The ears were divided in half on the basis of ear length, not on the basis of the number of seeds. Because seed set was frequently poorer in the basal half of the ear than in the tip half (see text for explanation), the tip half consistently has more seeds.

than those at the tip of the ear. In most cases where this pattern is found, there is irregular seed set in this region of the ear of the type seen on a pollinated ear in which the silks have passed the prime time for pollinating. However, this is probably not the explanation for most of the ears observed in our tests because most were pollinated within a couple of days of first silking. Because seeds with very little purple tissue are very defective, it may be that seeds without any purple sectors abort. Such seeds would be more likely in this region of the ear where the dappled expression is more intense.

It was first assumed that dappled was a mutable allele of a2 because it was observed in an a2 $bt \times purple Mu$ cross. However, to rule out the possibility that another aleurone locus was involved, it was tested against the aleurone testers for a1, a2, c1, c2, and r loci. These tests were made reciprocally. At the same time, Dap stocks also were crossed reciprocally to purple aleurone lines. The plants that were used in these crosses were from Dap seeds. All crosses in which Dap plants were used as males gave nothing but purple seeds. (Two sectored seeds from male outcrosses to a2 testers were found, but when they were planted and test crossed, they turned out not to be dappled.) However, all crosses where Dap plants were used as females segregated for Dap seeds, even the crosses with purple aleurone. Thus, Dap seems to behave as a dominant trait in plants crossed as females.

Although dappled is not expressed in male outcrosses, it is male transmissible, though in a reduced frequency. Last summer, we planted 10 seeds from each of 15 different male outcrosses of dappled to purple aleurone, and selfed these plants (Table 2). Had male transmission been complete, half of the plants would have segregated for dappled seeds (the male parents were heterozygous). The reduced frequency of dappled ears observed (31%) was significantly lower than 50% (p < .01). This summer, we will test a larger number of crosses in which *Dap* plants are used as males, to obtain a better estimate of its rate of transmission through the male.

Table 2. Distribution of dappled ears in male outcrosses of heterozygous dappled plants to purple aleurone.

	Female	Dappled	Number of	Number of	
Family	Parent	Parent	Dap cars	* 0018	Tota)
1386	834-5	640-1	3	5	8
1387	832-5	634-4	lt.	4	8
1388	833-1	635-3	0	8	8
1389	833-2	634-7	2	8	10
1390	833-4	633-6	2	8	10
1391	833-6	633-4	4	6	10
1392	833-8	633-1	1	8	9
1393	833-9	633-3	4	6	10
1394	833-10	633-5	2	6	8
1395	834-8	634-6	1	7	8
1396	834-2	633-7	4	4	8
1397	834-3	634-2	3	5	9
1398	834-4	636-2	4	5	9
1399	834-1	636-1	3	7	10
1400	834-9	634-3	5	5	10
Totals			42	93	135

As mentioned above, expression of dappled in female outcrosses is reduced from the expected frequency of 50%(Table 1). Furthermore, there is a higher frequency of Dapkernels at the base of the ear than at the tip. These observations have two possible explanations: (1) Female transmission of Dap is reduced, and (2) for whatever developmental reasons, Dap is not expressed as extremely at the tip of the ear as it is at the base; thus, more of the kernels at the tip could be heterozygous, but the trait isn't being expressed. We will test both of these possibilities this summer by growing purple kernels from both the tip and base regions of these ears, and seeing if they carry dappled.

All plants from dappled seeds so far studied have been heterozygous, even those arising from seed from selfed Dap plants, which suggests that the gene is lethal in the homozygous condition. If further tests bear this out, there could be a very interesting dosage pattern regulating the expression of this gene (i.e., + + + and Dap + + = purple aleurone, Dap Dap + = mutant aleurone, Dap DapDap = lethal). On the other hand, the difference in expression between male and female outcrosses could be due to male vs. female transmission effects. We will investigate these possibilities at the earliest opportunity, and welcome suggestions for further experiments.

Under the dissecting microscope, the purple areas of dappled seeds appear to be raised above the yellow sectors. If the pericarp is peeled from the seed, the cellular structure in the central portions of the yellow areas appears amorphous and irregular. The purple sectors have normal-appearing aleurone, and the portions of the yellow areas that are immediately adjacent to purple sectors are normal, too.

Cross sections through the aleurone and adjacent endosperm of imbibed *Dap* seeds (paraffin-sectioned, stained with safranin and counter-stained with chlorazol black prepared by PSS) reveal normal-appearing, intensely staining aleurone cells in the purple sectors (Figures 3-5). In the colorless sectors, several patterns of aleurone cell morphology are observed. In some instances, the aleurone cells are lighter staining, and elongated (about twice as long in the direction perpendicular to the seed surface as they are in directions parallel to the surface—Figure 3). In other preparations, the aleurone in the colorless sectors consists of several layers of small, irregularly-packed cells (Figure 4). In still other preparations, the colorless sectors have an aleurone consisting of a few "normal" aleurone cells irregularly interspersed with what appear to be

Figure 3. Cross section through the aleurone and adjacent endosperm layers of a dappled seed. The aleurone cells to the right are typical of normal aleurone cells, and are found in purple sectors, while the elongated aleurone cells to the left are from a colorless aleurone sector.

Figure 4. Cross section through a dappled seed demonstrating multiple aleurone cell layers in mutant tissues (to the left), and normal aleurone cells (to the right).

Figure 5. Cross section through a completely mutant dappled sector, showing regions missing aleurone cells.

starchy endosperm cells similar to the ones which normally underlie the aleurone (Figure 5).

Although some of these cell patterns may be the result of artifacts induced by our cytological technique, which we are still trying to perfect, it is nonetheless apparent that the *Dap* mutant is altering the normal development of the aleurone cells, and since the mutant cells are colorless, these altered cells have lost the ability to synthesize anthocyanin pigments. This alteration has more severe effects than just altering pigment synthesis as evidenced by the very defective state of seeds that are predominately yellow with very little normal aleurone tissue, and the total absence of completely yellow seeds. Whatever aleurone function is interrupted by this mutation, it appears to be essential for normal seed development. Thus, *Dap* is undoubtedly a developmental mutant.

Dappled seems to be a dominant mutable gene affecting the development of the aleurone. It has reduced transmission through the male (and possibly through the female as well), and may be dose-dependent in its expression.

Two additional mutants with aleurone patterns that superficially resemble dappled have been found in Mualeurone color stocks. One arose from a cross of a purple Mu plant with an a1 sh2 tester. This mutant is similar in both aleurone phenotype and transmission. It is not allelic to a1, and the sectored seeds are only found in female crosses and not in male crosses. It is probably allelic to Dap, but since we have not yet demonstrated this conclusively, we are calling this mutant Dap^*-3349 . The second mutant occurred in a Mu-induced bronze-1 mutable stock (bz1-Mum8). Plants from the sectored seeds were twisted, crinkly-leaf dwarfs with tassels having anthers that dehisce poorly. We are currently in the process of further characterizing this mutant (Dap^*-6143), which appears to be expressed in both male and female outcrosses.

Philip S. Stinard and Donald S. Robertson

Some thoughts about the nature of *Mu*-induced *Y1* mutants

Previous studies of the genes affecting carotene synthesis in maize have indicated that many, if not all, of the same genes that are responsible for the carotene biosynthetic pathway in the leaves and other green parts of the plant are also involved in carotene synthesis in the endosperm as well.

My analyses of Guatemalan teosintes, which are perhaps the purest teosinte races, indicate that they are white seeded. Crosses with yellow-seeded corn as females give yellow F1 seeds and F2 ears that segregate 3:1 for yellow and white seeds. This white-seeded allele of teosinte is allelic to the standard y1 gene of corn. If, as has been suggested by many, corn evolved from teosinte, early corn was probably white seeded. Thus the genes responsible for carotene synthesis were probably only "turned on" in the leaf but not in the endosperm of the primitive corn. Sometime in the development of modern yellow-seeded corn lines, corn acquired the ability to turn these genes on in the endosperm. Since yellow is dominant, it is likely that the genetic change that permitted carotene synthesis in the endosperm is involved in the regulation of this pathway. Perhaps a mutation of a site that binds an endosperm repressor of a gene regulating this pathway occurred. Thus in the white seeded progenitors of modern yellow-seeded corn, this repressor would turn off this pathway in the endosperm. However, a mutation in or near the site of repressor binding could prevent its binding and thus result in the turning on of the carotene pathway. Such a mutation would be a dominant. There are other possibilities that can be suggested that would result in an apparent dominant mutation (e.g., mutations of the locus producing the repressor substance resulting in a repressor that is no longer able to bind to the repressor site of the gene regulating the pathway).

The y1 locus is the most likely candidate as the locus involved in this regulation because it is the locus that is responsible for the white-seeded condition of teosinte.

Over the last few years we have accumulated several hundred independent Mu-induced mutants at the y1 locus. These all were originally isolated from crosses in which Y1 Y1 Mu stocks were used as either the male or female parents in crosses with y1 y1 wx wx gl1 gl1 (or gl8 gl8) stocks.

Earlier studies (pre-Mutator studies) had revealed two classes of yI alleles: 1) Those in which the endosperm is white and the plant green and 2) Temperature sensitive yIalleles in which the endosperm is white but the plant is pale green (pastel) when grown at temperatures about 35C. These latter alleles give zebra type plants when grown in the field. To date we have tested 278 of the Mu-induced y1 mutants and 71.94% have been the pastel type of allele.

A pastel y1 allele found at the California Institute of Technology in the stocks from the post World War II atom bomb tests (y1-wmut) was also mutable. This allele had both mutable endosperms and mutable seedlings (plant). Because Mu is known to induce mutable mutants (e.g. at the a1, a2, c2, b21 and b22 loci), the Mu-induced y_1 mutants were screened for mutable endosperms. To date, no mutable endosperms have been observed. The percentage of mutable mutants varies from one Mutator cross to another. The last determination of the frequency of mutables was made in 1984. Of 395 seedling mutants scored, 193 or 48.86% were mutable. Thus the Mu-induced $\gamma 1$ mutants, at first, seemed to be an exception in that none was mutable. When these Mu-induced v1 mutants were seedling tested, however, 52.5% of them had mutable pastel seedlings. Thus these are not unlike the other Mu-induced mutants. Some indeed are mutable. Yet even those that have mutable seedlings do not exhibit endosperm mutability, even when the seeds are cut and scrutinized under a dissecting microscope. Characteristically, mutable Mu-induced seed mutants have very small revertant sectors. The Mu-induced waxy mutants have this pattern of mutability. In some of these, islands of one or a few cells scattered throughout the endosperm stain blue with the iodine stain in these mutant endosperms. If the same is true for the mutable y1 alleles, it may be very difficult to recognize such isolated revertant cells in an otherwise white endosperm.

If the y1 locus is indeed a gene involved in the regulation of the carotene pathway, how are the phenotypes of the Mu-induced mutants at this locus explained? The white-endosperm-green-plant alleles could be reverse mutations that restored the original regulation of the carotene pathway (i.e., off in the endosperm). For example, perhaps the presence of the Mu insertion changes the configuration of the DNA so that, whereas in the Y1 allele the site of repressor binding was not available to the endosperm repressor, with the Mu insert present it now becomes available.

But how to explain the pastel alleles? The function of this allele in the endosperm seems to have been restored to the pristine condition but now its regulation in the plant is disturbed. Perhaps, for example, this locus has two regulatory receptor regions one involved in endosperm regulation and the other in plant regulation. The Mu insertion in the pastel allele may have restored function to the endosperm regulatory receptor but at the same time interfered with the normal function of the plant regulatory region.

The plant can tolerate a partial shutdown of the plant function of this gene. It seems, however, not to be able to tolerate its complete shutdown because no white-endospermalbino plant allele of this locus has ever been found in the Mu studies or for that matter, in previous studies of this locus. Nearly all other known mutants in the carotene pathway have alleles that give albino seedlings. It may well be that the yI locus is involved in the regulation of another pathway (or other pathways) required for the life of the plant. If that is the case, then deletions which include this locus would not be viable. We are currently screening our *Mu*-induced mutants for putative deletions involving this locus.

Dr. David Morris is presently utilizing the mutable Mu-induced y1 mutants in a program to isolate the Y1 DNA so that this locus and its regulatory regions can be characterized molecularly.

Donald S. Robertson

A putative early Mu-induced mutation

The timing of germ line Mutator activity has been subject to considerable study. Last year, I summarized some data that bear on this question (MNL 60:12-14, 1986). One suggested time for Mutator activity was early in development. If Mu induces mutations at this time, occasional large somatic sectors containing a mutant allele will be expected. To date, no sectors of this type have been demonstrated for a known gene locus. However, last summer we made a large number of exact reciprocal crosses between Mu² Y1 Y1 Wx Wx Gl1 Gl1 and non-Mu y1 y1 wx wx gl1 gl1 stocks. In one such set of crosses, when the Mu^2 parent was used as a female, all seeds were yellow starchy (n = 65). In the reciprocal cross (i.e., Mu^2 parent used as the male), however, there were observed 216 yellow starchy seeds and 106 white starchy seeds. Evidently two-thirds of the tassel shedding at the time this pollination was made consisted of a sector carrying a y1 mutant allele. Because half of the alleles in this sector are Y1, this sector must have contributed 106 Y1 alleles to the next generation. Thus, the portion of the tassel not included in this sector must have contributed the remaining Y1 alleles (110). Since there are twice as many Y1 alleles in this sector, it must be only half as large as the mutant containing sector. This mutant sector was not observed in the ear, thus, the mutation must have occurred after the cell lineages giving rise to the tassel and ear diverged but early enough in development to give rise to a significant portion of the tassel.

There is no way to determine by seed phenotype if this is a Mu-induced or a spontaneous mutant. We will test this mutant to determine if it is a mutable, temperaturesensitive, pastel allele. A positive result would suggest that this was Mu induced because most of the Mu-induced yI mutants are of this phenotype (see another report in this issue). Final determination that this is a Mu-induced mutant will depend upon its molecular characterization.

Donald S. Robertson

Further evidence for Mutator activity in the male gametophyte and for differential activity of Mu in male and female germ lines

In last year's News Letter, we presented evidence that Mutator could induce mutants in the gametophyte (MNL 60:12-14, 1986). One line of evidence came from the frequency of discordant seeds (i.e., seeds in which the genotype of the embryo and endosperm differed) produced in reciprocal crosses. Mu-induced yI mutants produced when Mu plants were used as females had a much lower frequency of discordant seeds than Mu-induced yI mutants produced when Mu plants were used as males. To date, only white-seeded mutants have been scored for discordancy. There is a reciprocal discordant class expected (i.e., yI yI embryo and heterozygous yellow endosperm). This class is much more difficult to score, because it can not be distinguished by classifying the seeds but must be determined by scoring the ears on plants from the yellow seeds.

If mutants are induced during the development of the male gametophyte, it is possible to have pollen grains with one sperm carrying the nonmutated Y1 allele and the other sperm with a mutant y1 allele. If sperm from such pollen grains fertilizes an embryo sac of a y1 y1 plant, half the time the sperm nucleus with the mutant allele will be included in the triple fusion product that produces the endosperm while the other sperm nucleus (with the nonmutant Y1 allele) will unite with the egg nucleus, and a discordant seed with a white endosperm and a Y1 y1 embryo will be produced. If the Mu plant is the female parent, however, mutations in the gametophyte would not be expected to produce many, if any, discordant white endosperm seeds. Such an event would require two independent mutations in the two cell lineages giving rise to the polar nuclei. Also, the mutation in the cell lineage that produces the egg nucleus would have to take place after the cell lineage giving rise to the polar nucleus separates from the one that produces the egg. Such a combination of events is very unlikely. In 1985, we reported a high frequency of discordant seeds in crosses involving Mu^2 plants as males and a low frequency of discordant seeds in crosses with female Mu^2 plants, as expected if Muis active in the gametophyte.

Additional studies of this phenomenon (i.e., the different frequency of discordant seed in reciprocal cross) were carried out in 1986. As in the 1985 studies, *exact* reciprocal crosses were made betwen Mu^2 stocks and a y1 y1 wxwx gl1 gl1 stock (a Mu^2 line is the progeny of the cross between two standard Mu lines). Mu^2 was used because of its high mutation frequency and the multiple y1 wx gl1stock was used so that contaminants could be recognized when this stock was used as a female parent. The results from the two years of crosses are seen in Table 1. There are over twice as many white seeds found in the crosses of Mu^2 as males than when the cross is in the reverse direction. Such a discrepancy is expected if gametophytic mutants are being produced.

Table 1. Reciprocal crosses of $Mu^2 YI YI Wx Wx \times yI yI wx$ wx gl1 gl1—Total of 1985-1986 experiments.

Mu	Mu ² as y parent			Mu ² as a parent			
White or pale yellow seeds	Total seeds	Freq. of white or pale yellow seeds	White or pale yellow seeds	Total seeds	Freq. of white or pale yellow seeds		
50	250,736	1.99×10^{-4} $x^2 = 32.9406$ p = .01	135	275,623	4.90×10 ⁻⁴		

Results expected if 34.29% (see text) of the y1 mutant seeds were discordant.

50 250,736 1.99x10⁻⁴ 88.71 275,623 3.22x10⁻⁴

To determine if putative discordant seeds, expected as a result of gametophytic Mu-induced mutants in the male gametophyte, could account for the difference in frequency of white seeds in these reciprocal crosses, 16 yI mutant seeds obtained from Mu^2 ears from 1985 crosses were planted and self-pollinated. All of the resulting ears were homozygous for the yI. Of thirty-five white seeds from the reciprocal cross $(Mu^2 \text{ as male})$, twelve turned out to be discordant (i.e., these plants were Y1 y1) (frequency = 34.29%). Thus, we see that discordant seeds occur only in crosses in which Mu^2 was the male parent. These results are in agreement with those predicted for Mu activity in the male gametophyte.

The results so far obtained from the reciprocal crosses only test for one class of discordant seeds. The reciprocal class of yellow endosperm-homozygous y1 embryo seeds cannot be scored. To do this we will plant a large sample of vellow seeds from these reciprocal crosses in an isolation plot and score for ears with 50% yellow seeds expected on a y1 y1 plant in a field with predominantly Y1 y1 plants. If mutations are being induced in the female gametophyte as well as the male gametophyte, they would be recognized as y1 y1 plants produced by yellow seeds. If it is assumed that discordant seeds occur in the same frequency for the population summarized in Table 1 as it did in the 1985 reciprocal crosses, 46 of the 135 white seeds from the crosses of Mu^2 as a male would be discordant. If these 46 seeds are removed from the total of the white seeds, the frequency of y1 mutants from the male Mu^2 crosses (i.e., 3.22×10^{-4}) now is closer to the frequency of y1 mutants in the female Mu^2 crosses (i.e., 1.99×10^{-4}). This frequency, however, is still higher than that observed when Mu^2 plants are used as females and the difference is still significant at the 1 percent level. Thus the discordant seeds cannot account for all of the difference observed between the male and female crosses of Mu^2 plants. It appears that there are more germinal mutants induced when Mu plants are crossed as males than when they are crossed as females. This confirms previous observations on reciprocal crosses involving Mu plants (D.S. Robertson, Mol. Gen. Genetics 200:9-13, 1985).

In summary, there has been presented additional evidence that Mu can induce mutants in the male gametophyte. Additional tests will be necessary to determine if Mu is also active in the female gametophyte. Also, evidence is presented confirming earlier observation that more Mu-induced mutants are observed in the male progeny of a given plant than in the female progeny.

Donald S. Robertson

Mendelian ratios in crosses of mutable Mutatorinduced al mutants

Many mutable aleurone mutants induced by Mu have been obtained in our research program. These have included the loci of a1, a2, c2, bz1. To date, the a1-Mum mutants (Mu-induced mutable a1 mutants) that have been studied in the greatest detail are a1-Mum1, a1-Mum2 and a1-Mum3. These mutants all have the same pattern of mutability in that only small (late) revertant spots are observed. Considerable variation, however, in the intensity of spotting has been observed in both outcrosses and selfs of these mutants, varying from very intensely mutable to stable mutant phenotypes. The following scale is used in classifying seeds for intensity of mutability: Class 1 = stable, Class 2 = low mutability, Class 3 = medium mutability, Class 4 = high mutability and Class 5 =stable purple.

In the analysis of most of the early crosses of these mutable mutants, no discernible Mendelian ratios could be observed. However, as outcrossing continued with these stocks seemingly Mendelian ratios occasionally were found. In the 1985-86 nursery, three outcross ears (two of *a1-Mum2*, and one of *a1-Mum3*), which segregated for putative 1:1 ratios in outcrosses to *a1 sh2* tester, were selected for further analysis. The percentages of stable seeds observed among the *a1-Mum* seeds on these ears were 47.51% (n = 301), 50.00% (n = 60), and 47.75% (n = 222). The first two crosses involved *a1-Mum2* and the latter was an *a1-Mum3* cross.

Stable a1-Mum (= a1-Mum-stable, i.e., a stable derivative of a mutable a1-Mum mutant) seeds from these outcross ears were sown and the resulting plants crossed with plants from non-a1-Mum sibling seeds from the same ears. If the 1:1 ratios are the result of the segregation of a single dominant controlling element (a regulator element), half of these crosses should result in ears that again give 1:1 ratios and the other half would have only stable seeds. One of these crosses produced three ears, two of which gave mainly stable seeds or an occasional seed with a few spots. One ear, however, had 49 stable plus Class 2 seeds (53.26%) and 43 mutable (33 Class 2 and 10 Class 4). The second cross resulted in six ears that had only stable or stable and few low mutable seeds and two ears that segregated for mutability and stable. One of the latter two ears had 30 stable plus low mutables (14.78%) to 173 medium and high mutable. The second segregated for 32 stable plus low mutable (48.48%) and 34 medium plus high mutable. From the third cross only two ears were recovered, one segregated primarily stable seeds and a few seeds with an occasional spot while the other segregated 1:1 for stable versus mutable (i.e., 69 stable and low mutable (43.95%) and 88 medium and high mutable).

In 1986, mutable and stable seeds from these winter nursery outcross ears were sown. The plants from the mutable seeds were outcrossed to standard $a1 \ sh2$ stocks that had never been crossed with Mutator. The plants from the stable seeds were selfed.

Three plants from Class 4 seeds of the winter ear with 14.78% stables were crossed to al sh. One of the outcross ears had a low frequency of stables (i.e. 6.84%) like the ear from which it came. The second cross gave predominantly stable and low mutables (83.58%). However, if the low mutables are included with the medium and high mutables the stables are 59.38%; giving an approximately 1:1 ratio for mutable to stables (Note: see a later statement about how low mutables are usually counted and why). A self was obtained on the mutable parent of this first cross and it had predominantly mutable seeds of Classes 3 and 4. The third outcross ear gave 30.0% stable seeds. The self of the mutable parent in this cross had only mutable seeds of Class 4. It is possible that this line has three copies of a regulatory element although the inheritance patterns are not consistent.

One plant was obtained from a Class 4 seed from a winter outcross ear with 44.48% stable seeds. This plant on outcrossing to *a1 sh2* gave an ear that was segregating 1:1 for mutable and stable seeds (56.78\% stable).

Four plants were obtained from Class 2 seeds from the winter outcross ear with 53.26% mutability. Three of the four plants when crossed with a1 sh2 gave ears with some mutable seeds (predominantly of the low mutable class). The percent of stable seeds in these ears was 46.64%, 65.88%, and 71.69%. The fourth outcross ear had only stable seeds.

The above 1986 tests were from a1-Mum2 stocks. The last test was with an a1-Mum3 stock, which in the winter nursery gave an outcross ear that segregated 43.95% stable seeds. Plants from four Class 4 seeds from the winter outcross ear when outcrossed to $a1 \ sh2$ gave ears with the following percents of stable plus low mutable seeds: ratios 66.67%, 57.89% and 54.91% and 48.94%. Results from the foregoing 1985-86 and 1986 crosses are summarized in Table 1.

Table 1. Summary 1985-86 tests of putative 1:1 (mutable: stable) *a1-Mum2* and *a1-Mum3* outcross ears and the 1986 follow-up tests with *a1 sh2*.

85-86 Plant number	85-86 cross non-a siblin seed	al-Mu to plan I-Mum g seed classifie	m stabl ts from stable	e lasses	% class	1985 cross of plants from mutable seeds from 85-86 ears to standard <u>a1sh2</u> stocks seed classification classes				% class
	1	2	3	4	and the second second	1	2	3	4	
5572-3	28	2	1	172	14.78					
						2	6	10	99	5.84
						76	31	20	1	83,58
										or 59,38*
						41	10	67	52	30.00
5572-6	28	4	2	32	48.48				11004	
						65	2	4	47	56.78
5571-1	49	33		10	53.26					-
				07870	122.02322	118	132	3	0	46.64
						112	58	0	0	65.88
						157	62	0	0	71.69
5573-2	59	10	3	85	43.95					
						84	44	17	47	66.67
						77	22	28	50	57.89
						70	25	12	66	54.91
						41	7	9	41	48.98

In these crosses only stables were included in the stable class. See the text for why class 2 mutables are usually grouped with stables.

Stable seeds (a1-Mum stables) from each of the winter nursery ears tested in the above 1986 crosses gave plants with selfed ears that had predominantly stable seeds. On these ears, only an occasional seed was found with one or a few spots.

The results, so far presented, suggest that it is possible to derive stocks from Mu-induced aleurone mutants that have the classical two element pattern. Sibling seeds from the four winter nursery outcross ears from which the seeds for the 1986 outcross tests were selected were planted in the selfing block and selfed to determine if the a1-Mum parent plants in the 85-86 winter nursery had germinal mutator activity. Two of the plants did. One had 6.06% mutation frequency (n = 33) and the other had a 2.94% mutation frequency (n = 34). The other two winter nursery plants did not have mutator activity (i.e., no mutants were found, n = 28 and 43). These tests are very limited, thus it is impossible to generalize from them. However, the results from these tests suggest that there are different mechanisms responsible for regulating germinal Mutator activity as measured by induced mutants and somatic Mu activity as measured by germinal activity. This observation supports conclusions presented in last year's News Letter (MNL 60:8-9, 1986).

In the winter of 1985-1986, several new 1:1 ears were found among outcrosses of a1-Mum/a1 sh2 stocks again to a1 sh2. These were tested further in 1985 by crossing plants from a1-Mum-stable seeds to plants from non-a1 -Mum seeds from the same ear (i.e. a1 sh2 segregants), as in the previous 85-86 tests. Also, in two instances, plants from mutable seeds of these 1:1 ears were crossed to standard a1 sh2 stocks. The results of these tests are given in Table 2. As indicated in a footnote the ratios have just been estimated at this time. Also as noted in a footnote, the percent stable on these 1:1 ears was calculated by combining Classes 1 and 2 into the stable class and Table 2. Test for segregation of a single regulator element for somatic mutability in Mu induced a1 mutants. (Plants from stable a1 derivatives from ears segregating 1:1 mutable: stable crossed to plants from non-a1-Mum sibling seed or mutable seeds from the same ear crossed to a standard a1sh2 stock—See text for more details about these crosses.)

No, of 1:1 war	ar stable of 85-86 lifear	of 1 war stable of 85-86 lil ear		2 No. of Cla stable tested of of 85-86 plants pla lifear is 1986		Class of need planted	Outcross onto silks of non-al- <u>Hum</u> sibling plant	Outcross waing pollen of non-al-Mum sibling plant	Outcress onto silks of a standard <u>al sh2</u> stock
85-86 5370-5	54,80 [°]	2274-1	i.	stable+ ⁶	stablet				
al-Hum3	10052001	-2	1	stable+	stable+				
And and a second s		-3	1	():1)b	(1:1)				
		-5	1	(1:1)	(1:1)				
		-6	- 1	stable+					
		-8		tow.					
		-9	i	scablet					
		2295-2	A	3000101		(1:1)			
		-3				(1:1)			
		-4	4			(1:1)			
		-5	4			(1:1)			
		-6				(1:1)			
		-1				(121)			
85-86 5511-5	64.29	2275-1	4	(1:1)					
al-Nwm3		-2		(1:1)	(1:1)				
		-3	1	stable+	stable+				
		-5		(1:1)					
		-6		(1:1)					
		-8		arablet	stablet				
		-9			stable+				
		10	1	stable+	stablet				
		2300-3	3						
		-5	3		**				
		-5 -7	3			(1:1)			
85-86 5511-1	59.09	2280-1		0.13	(1-1)				
#1-Hum3		-2	1	(1:1)	stable+				
		-3	1	(1:1)					
		-4	1	(1:1)					
		-5	1	(1:1)	(1:1)				
		-6	1	stable+					
		-7	1.1	(111)					
		-9		(1-1)					
		10	i	(1:1)					
85-86 5510-2	61.63	2281-1	1	stables					
al-Mum3		-2	i.	stable	scable+				
		-3	1	(1:1)	stable				
		-4	1	stable*	stable				
		-5	1	stable*					
		-0		stable	11.115				
				stables	13113				
		-9	i	are more and	stable				
		10	1	stable+	stable				
85-86 5578-5	45.40	2282-1	1	stable+					
al-Hum3		-2	1	stablet					
		-3	1	stable+					
		-4	1	stable					
		-0		(1-1)	(1-1)				
		~8	i	stablet	scablet				
		-9	1	hish	and the second second				

a. stable# = an ear that has predominantly stable seeds but also has an occasional spotted seed, usually with a low level of mutability (i.e., Class 2 or rarely 3),

(1:1) - estimated 1:1 ratio of mutable to stable. Thus has not permitted the counting of needs on these area at this time. Thus these are only estimates, Note: In the case of the reciprocal crosses, the ears in which the <u>al-Mom</u> plants mala female were classified rule and then the outcross of the <u>al-Mom</u> plants mala female were classified with more ference being made to the results of the reciprocal crosses.

c. To determine these ratios, Class 1 and 2 were considered to be stable and Class 3 and 4 as mutable. See text for explanation of this procedure.

Classes 3 and 4 into the mutable class. The Class 2 mutables were usually pooled with the stables because, frequently Class 2 seeds will give rise to plants that have predominantly stable seeds in the next generation. Also plants from stable seeds when selfed and/or outcrossed to al sh2 will frequently give ears with predominantly stable seeds plus, sometimes, a few Class 2 seeds as well. Thus Class 2 seeds seem to be incipient stables. It is obvious from Table 2 that mutability can be restored to al-Mum-stable stocks by crossing to plants from sibling non-al-Mum seeds from the same 1:1 ear. When this is observed, the ratio obtained is again 1:1. Approximately half of the crosses result in this 1:1 reactivation. These results are expected if a single regulator of a1-Mum mutability is segregating in these stocks. The fact that the same results are observed in all but two of the reciprocal crosses reinforces this conclusion, as does the 1:1 ratio observed in the outcrosses to $a1 \ sh2$ of the plants from mutable seeds of these 1:1 ears. Samples of seeds from these 1:1 ears were planted in the 1986 selfing block to screen for germline Mu activity in these stocks. As of this writing, we have the results from only three of these tests. Two had germinal activity, one did not. In both positive tests, the population size was 37 and the mutation frequency 2.70%. The population in the negative test was 36. These results provide additional support for the hypothesis that different mechanisms are responsible for germinal and somatic Mu activity.

In summary, the results reported here suggest that it is possible to derive an apparent two element system from Mu-induced mutable aleurone mutants. What role if any the putative regulator element plays in the regulation of germinal activity of the Mutator system is not known at this time. In fact, the evidence here agrees with that presented last year (MNL 60:8-9, 1986) and in other reports in this year's News Letter that would suggest somatic mutability and germline mutability are not necessarily correlated.

Donald S. Robertson

Additional evidence on the correlation of somatic mutability and germinal mutator activity in *Mu*-induced aleurone mutants

In last year's News Letter we presented the first results of a study to determine if somatic instability in Mu-induced aleurone mutants could be used as an indicator for Mu germinal activity (MNL 60:8-9, 1986). Last year's data suggested that lines having predominantly seeds with a high level of mutability sometimes did and sometimes did not have germinal activity, while lines that had predominantly medium or low levels of mutability had no germinal activity.

This year we have partial results to report (at this writing we still have more crosses to analyze) from an additional generation of testing (Table 1). Seeds from lines previously outcrossed to *a1 sh2* tester stocks, which produced ears with predominantly low (= Class 2), medium (= Class 3) or high (= Class 4) seeds, were again

Table 1. Result of tests of germinal mutator activity for mutable *Mu*-induced *a1* mutants.

Family No.	<u>al</u> allele	Mutability class of the 0.C. ear	Average Mutabili score of seed on 0.C. ear	Mutability ity classes of f the seeds planted r	Average Mutability class of all @ ears from the family	No. of @ ears scored	% of ears segre- gating for new mutants
85-86-3501	a1Mum2	low	1.31	#1	1.37	35	0.0
- 3502	a1Mum2	low	1.51	#1 & #2	1.39	26	0.0
-3503	alMum2	low	1.10	*1	1.75	14	0.0
-3504	alMum2	med.	2.77	12 4 13	2.44	12	0.0
-3505	a1Mum2	med.	2.10	13	2,41	22	0.0
-3507	a1Mum2	med.	2.70	+3	2.35	25	0.0
-3506	a1Mum2	high	3.86	#4	3,86	25	0.0
-3508	alMun3	low	1.68	#1 6 #2	1,36	20	0.0
-3509	a1Mun3	10w	1.20	#1	1.44	27	0.0
-3510	alMum3	med.	2.30	#3 & #4	2,68	33	0.0
-3511	a1Mum3	med.	2.30	*3	2,30	26	(3.85)**
-3512	a1Mum2	high to stable*	1.13	#1	1,66	28	3.57
-3513	a1Mum2	high to stable	1.09	#1	1,35	29	6,90
1986-1201	alMuml	low	1.40	#1 8 #2	1.37	41	0.0
-1202	alMum1	low	1.33	#1 6 #2	1.30	47	0.0
-1203	alMuml	low	1.52	#1 & #2	1.24	44	0,0
-1208	a1Hum2	low	2.08	20-#1,20-#2,10-#3	1.66	44	0.0
-1204	a1Mum2	med.	3.18 10	0-#1,10-#2,10-#3,20-#4	2.25	40	0.0
-1205	a1Mun2	med.	3.21 10	0-#1,10-#2,10-#3,20-#4	2,37	39	0.0
-1206	a1Mum2	med.	3,32 10	0-#1,10-#2,10-#3,20-#4	2,49	42	7.14
-1207	al Mun2	med.	3,11	5-#1,5-#2,25-#1,15 ybt	2.44	56	0.0
-1209	a1Mun2	high	3.89	#4	3.60	46	0.0
-1210	a1Mum3	low	1.23	40-#1, 10-#2	1,18	40	0.0
-1211	a1Mum3	low	1.37	20-#2, 30-#3	1.21	42	0.0

*Stock in which the previous generation was highly mutable but on outcrossing gave predominantly stables.

**One doubtful mutant.

outcrossed to an a1 sh2 tester and ears selected that gave again the type of ear of the parental a1-Mum stock. In some crosses, ears that differed from the parental stock were observed (e.g., ears that switched from high to stable, had a range of mutable classes instead of predominantly one class, etc.). Some of these latter types of ears also have been tested.

The 1985-1986 winter nursery had a very poor stand, thus the numbers in each test are not large. If one, however, sums all the plants in the high and medium crosses, the total population is 84. This also is not a large population but in the vast majority of Mu outcross populations of this size some mutants would be expected. As in previous tests most of the lows have no germinal Mu activity. The 1986 families 3512 and 3513 are of special interest. Two generations ago in the ancestry of these lines, two independent high mutable plants were crossed to a1 sh2. In this outcross generation, which was grown in 1985, some plants from each line had ears with predominantly stable (Class 1) seeds in both selfs and outcrosses to a1 sh2. The seeds from two of these a1 sh2 outcrosses, in which only stable (a1-Mum-stable) seeds were observed. were planted in families 86-3512 and 86-3513. These families unexpectedly showed a high germinal mutation frequency. In all previous tests of stable derivatives, they have never shown germinal mutator activity. Thus, it had been assumed prior to this observation that the loss of somatic and germinal Mu activity occurred concomitantly. These observations suggest, however, that germinal activity can remain in the absence of somatic activity. In the ancestry of 3512, the parent two generations ago was al sh2/a1-Mum Sh2. Plants of this genotype can rarely be expected to give a stable a1 (standard allele) Sh2 seed as the result of crossing over between a1 and sh2. However, since mutable seeds were planted from this heterozygous ear, a homozygous stable plant would not be expected unless heterofertilization also occurred, involving a pollen grain with the crossover product and one with the a1-Mum allele, an extremely unlikely event. Even this explanation is not possible for 3513 because two generations ago the genotype was purple aleurone/a1-Mum2 and thus there is no standard a1 allele available and the stable must be derived from a1-Mum2.

In 1986, additional crosses of the same material planted in the winter nursery were made. Only one of these crosses had germinal mutator activity (1206, medium seed mutability). Three lines with medium mutable seeds and one with high mutable seeds did not show any germinal activity.

The evidence is accumulating that somatic mutability is not a reliable predictor of germinal activity. It neither predicts the loss or the retention of the ability of Mu stocks to induce germinal mutation. Crosses described in other work from our laboratory and presented in the report by Brad Roth and me provide further confirmation of this observation. The fact that these two different aspects of Mu activity can be disassociated suggests that the two phenomena are dependent on different aspects of the Musystem.

Donald S. Robertson

The effect of inbreeding on the expression of mutability in *a1-Mum2*

In 1983, Robertson reported (Mol. Gen. Genet. 191:86-90, 1983) that inbreeding Mu stocks would result in the inactivation of germinal mutator activity. Others have shown that this is accompanied by modification of the Mu1 and Mu1-like elements present in these stocks (Bennetzen, Plant Genetics, M. Freeling, ed., pp. 343-353, 1985). Similar Mu1 element modification has been shown to accompany the loss of somatic mutability in Mu-induced aleurone mutants (Chandler and Walbot, PNAS 83:1767-1771, 1986). Thus, it seemed reasonable to assume that inbreeding a Mu-induced aleurone mutant would eventually result in the loss of mutability accompanied by modification of Mu elements.

In 1985, crosses were made between two different stocks of a *Mu*-induced *a1* mutable mutant, *a1-Mum2*, which exhibited a consistent expression of an intense mutable pattern (mutability scale used in this report: Class 1 = stable, Class 2 = low mutability, Class 3 = medium mutability, Class 4 = high mutability, Class 5 = purple). With the 1985 cross there had been 5 generations of inbreeding (either selfing or intercrossing, see Figure 1). This is equivalent to Mu^{32} per se in our previous inbreeding experiment (Robertson, Mol. Gen. Genet.

Figure I. Pedigree of the aIMum2 class 4 stocks crossed in 1985.

191:86-90, 1983). In the previous work, modification and loss of germinal Mu activity had been observed to be complete by Mu^{16} , at least one generation earlier than that of the *a1-Mum2* stocks crossed in 1985. The inbreeding in the *a1-Mum2* stock has been more intense than in the previous work because it involved 3 generations of selfing which was never practiced in the original inbreeding experiment.

Sixteen ears were produced as a result of intercrossing in 1985. Seven of these had nothing but Class 4 seeds; six had predominantly Class 4 seeds with a few Class 2; one had predominantly Class 4 with a few stable seeds (Class 1) and two ears had a spectrum of mutable classes. On one of the latter two ears, the mutable classes ranged from Class 4 to Class 2. On the other, the range was from Class 4 to Class 1.

In the 1985-86 winter nursery, seeds from four of the ears from the summer crosses were sown (as families 5558, 5559, 6558, 6559) and the intercrossing was continued. The results of these crosses are given in Table 1. Although

Table 1. Results of intercrossing a1-Mum2 Class 4 stocks in the 1985-86 winter nursery.

85-86	Plant &		Mutobility C	lassification [®]	
Family &	Family #	1	ntercross Ear	Exact Re	sciprocal
Plant #	(o'parent)	Major	Class Minor Class	Major Class	Minor Class
(Classification	for 6558 parer	ntear: 23	30 class 4 seeds)		
6558-1	6559-2	4	3	NTC	NT
6558-2	6559-6	4		NT	NT
6558-4	5559-4	4		NT	NT
6558-5	5558-5	4	2	NT	NT
6558-6	5559-5	4	2	NT	NT
6558-7	6559-5	4		4	20
6558-8	6559-3	4	3	NT	NT
6558-8T	5559-2	4	3	4	3,2,1
(Classification	for 6559 parer	teer: 3	10 class 4, 1 class 3	, 1 class 2 seed	s)
6559-1	5558-7	2	3	3.2	-
6559-2	5559-8	2	3	2	-
6559-3	5559-1	2	3.4	-	2
6559-6	6558-5	4	3.2.1	Q	-
6559-7	6558-8	4	3.2	12	-
6559-8	5559-9	2	1	S	÷.
6559-9	5559-9	2	1	2,1	-
(Classification	for 5558 parer	nt ear: 2	34 class 4, 1 class 3	(seeds)	
5558-1	6558-1	4	3.2	-	-
5558-2	5559-6	2	1	3.2.1	-
5558-3	6558-2	4	3.2.1	-	-
5558-4	6558-4	4	3.2	2	-
5558-5	5559-7	2	1	Sec	-
5558-6	5559-3	3,2,	, -	4,3,2,1	-
(Classification	n for 5559 parer	nt ear: 2	92 class 4 seeds)		
5559-1	6559-7	3,2			-
5559-4	5558-4	3,2,	1 -		
5559-7	5558-3	2	1	-	-
5559-8	5558-1	2	1	8	-

⁸ Mutebility scale as in text. Major Class is predominant class (multiple classes indicate mixture), minor classes contain relatively few seeds.

b Exact reciprocal crosses are recorded only once.

C No test

Table 2. Results of intercrossing *a1-Mum2* Class 4 stocks (seeds from sibling ears of material planted in 1985-86) in the 1986 summer nursery.

1986	Plant &		Mutability Cit	assification		
Family &	Family#	Intercr	oss Ear	Exact Re	ciprocalD	
Plant#	(d'parent)	Major Class	Minor Class	Major Class	Minor Class	
(Classification	n for 8109 parer	nt ear: 188 cla	ss 4 seeds)			
8109-1	9109-3	2	1	2	1	
8109-3	9109-1	1	2	2	1	
8109-5	9109-2	2	1	2	1	
8109-6	9109-2	2	1	NTC	NT	
(Classificatio	n for 8110 parer	ntear: 182 cla	iss 4 seeds)			
8110-1	9110-5	4		NT	NT	
8110-2	9110-1	4	÷	NT	NT	
8110-5	9109-4	4	3,2	4	3,2	
8110-6	9110-10	4	-	NT	NT	
8110-7	9110-7	4		4	-	
8110-8	9110-2	4	55	NT	NT	
Results of all (Classificatio	crosses with fam n for 9109 parer	ily 9109 are r nt ear: 223 cle	ecorded in exac ass 4, 2 class 2	t reciprocal coi seeds)	lumn.	
(Classificatio	n for 9110 nace	ntear 132 cl	ess 4)			
9110-3	8110-8	4	-	NT	NT	
9110-4	8109-4	4 (nul	bbin) -	NT	NT	
9110-5	8110-6	4	-	NT	NT	
9110-6	8110-1	4	-	NT	NT	
9110-10	8110-3	4	-	NT	NT	
9110-11	8109-6	4	-	NT	NT	

^a Mutability scale as in text.

b Exact reciprocal crosses are recorded only once.

C No test

all ears from which seeds were selected for planting had only Class 4 or predominantly Class 4 seeds, intercrosses between three of the families resulted in ears which showed a marked loss in mutability. The one exception was family 6558. Whenever this family was involved in an intercross, the ears had only Class 4 or predominantly Class 4 seeds. The results were the same regardless of the direction of the cross. In all cases where the exact reciprocal crosses were made, the results were basically the same in both directions.

In the 1986 summer nursery, intercrosses between plants from the four additional 1985 ears were made. The results, shown in Table 2, are similar to those obtained in the winter nursery, in which seeds from sibling ears were planted. Again two types of families are seen. One type produces ears with primarily Class 4 seeds and the other type gives ears with predominantly low mutability seeds. Again, in crosses between high and low mutability lines, the high condition is dominant whether the high line is crossed as a male or female.

One of the 1985 ears, 6161-8/5151-3T had 237 Class 4, 64 Class 3 and 28 Class 2 seeds. Ten Class 2 seeds were planted from this ear. Eight plants in this family were either selfed and outcrossed to a1 sh2 or reciprocally crossed to a1 sh2. No mutable seeds were observed on any of the progeny ears.

During the summer of 1986, seeds from the 1985-1986 winter nursery families 5558, 5559, 6558 and 6559 as well as some seed from the 1985 intercross ears were planted. The resulting plants were intercrossed reciprocally. Intercross results are reported in Table 3. All seeds used in these crosses were either 1985 class 4 seeds (as indicated) or derived from the 1985-86 intercrosses shown in Table 1. The following define the parents of the various crosses shown in Table 3: 1) Low/low-the result of intercrosses involving combinations of 85-86-5558, -5559, or -6559 families. 2) High/low-the result of intercrosses between family 85-86-6558 as a female times 85-86-5558, -5559 or -6559. 3) Low/high-the result of reciprocal crosses in which 85-86-6558 is the male parent. The specific family origin of the 86-600, and -800 families from Table 3 is shown in the pedigree in Figure 1.

When plants from Class 2 seeds from a low/low (607, 807) were intercrossed, the resultant progeny were without exception Class 1 stables. Similar results were obtained in exact reciprocal crosses.

Intercrosses between plants from Class 2 seeds from a low/low (609 and 611) and plants from a 1985 Class 4 (809 and 811) gave variable results. Seed mutability ranged from Class 4 to Class 1 with most ears segregating for Class 4 as a major class. Notable exceptions were ears from 609-1/809-6, 609-2/809-4 and 611-9/811-8 which gave primarily low seeds. Reciprocal crosses from these same plants showed higher mutability, however, all other sets of reciprocal crosses in these two families showed only a slight bias toward higher mutability when the Class 4 parent was the female.

Intercrosses between plants from Class 4 seeds from two high/low lines (613,813) gave only seeds of low mutability when crossed in either direction. Similarly, intercrosses between plants from Class 4 seeds from a low/high (615,815) gave seeds of low mutability. When plants from Class 2 seeds from a low/high (617,617.1) were interTable 3. Results of intercrossing additional *a1-Mum2* stocks in the 1986 summer nursery.

1986	Plant &		Mutability Ch	ssification ^a	
Fam11v &	Family#	Intercr	oss Ear	Exact Re	ciprocal
Plant#	(o [*] parent)	Major Class	Minor Class	Major Class	Minor Class
Cranel Class 2	from low (low				
CI USS . CIOSS 2	n on nwi nwi.	A SOUND			
607-1 (2)	607-2(2)-	1			3
607-2(2)	807-7(2)	- 1	1	1	1
607-3 (2)	807-8 (2)	1	1	1	1
607-4 (2)	807-6 (2)	1	1	1	1
Cross: Class 2	from low/low x (Class 4 (85-6	161-1/5151	-8).	
609-1(2)	809-6 (4)	2	4.3.1	4.3.2.1	-
609-2(2)	809-4 (4)	ī	2	1	2
609-3(2)	809-3 (4)	432		à	321
600 6 (2)	800 7 (4)	4,0,2,	7.2.1	7	7 2 1
609-6(2)	009-7(4)	4.70	3,2,1	7.7	5,2,1
609-1(2)	809-8(4)	4,3,2,		4,3	2,1
609-8 (2)	809-5 (4)	4,3,2,	1 -	4,3,2,1	-
Cross: Class 2	from low/low x	Class 4 (85-6	161-1/5151	-8).	
611-2(2)	811-5 (4)	4,3,2,	1 -	4,3,2,1	
611-9(2)	811-8(4)	1	3,2	4,3,2,1	-
611-10(2)	811-1 (4)	4,3,2,	1 -	4,3	2,1
Cross: Class 4	from blob/lowC	K SAMA			
613-1(4)	813-3(4)	2	31	2	1
613-6 (4)	813-8 (4)	21	0,1	2	1
617 7 (4)	013-0(4)	2.1	2	1	5
613-7(4)	013-10(4)	1	2.		4
613-9(4)	613-6 (4)	2	3,1	2	3
Cross: Class 4	from low/high ^C ;	k Class 4 from	low/high.		
615-1 (4)	815-3 (4)	1	2	1	2
615-2 (4)	815-7 (4)	2	1	2,1	
615-3(4)	815-4(4)	2.1	-	2,1	
615-4(4)	815-1 (4)	1	2	1	2
615-6(4)	815-8 (4)	2.1	-	2	ī
020805/05/05/05 19200001/02210-07020		17.40 			
Cross: Class 2	from low/high x	Class 4 (85-	6161-1/5151	-8).	121120.0
617-1 (2)	817-1 (4)	4,3,2,	1 -	4	3,2,1
617.1-1 (2)	817-4(4)	4,3,2,	1 -	4,3	2,1
617.1-2(2)	817-5 (4)	4	3,2,1	4	3,2,1
617 1-3 (2)	817-8 (4)	4,3	2,1	4,3	2,1
Cross: Class 1	from high/low x	Class 1 from	low/high		
619-1(1)	8101-1(1)) 1	ion night.	1	
Conse. Class 1	from high /low w	Class A/RE	6161 VE1E	01	
619-1T(1)	823-5 (4)	4,3,2,	1 -	4	3,2,1
					15 55
Cross: Class 2	from low/low x	same			
621-1(2)	821-3(2)	1		1	
621-3(2)	821-2(2)	1	-	1	
621-6 (2)	821-5 (2)	2,1		1	2
Cross Class 4	(85-6161-1/5	5151-8) x san	ne		
623-4 (4)	823-7 (4)	4		4	3.2.1
623-5 (4)	823-1 (4)	4	3	4	2,000
623-7 (4)	823-2 (4)	4	3.2	4.3.2	-
					and the second

⁸ Mutability scale as in text.

^b See Figure 1 for details of 600 and 800 family progenitors.

^C See text for definition of low/low, low/high and high/low parent lines.

d Mutability class of seed planted in ()

crossed with plants from 1985 Class 4 seeds (817), all classes of mutability resulted on the progeny ears. Exact reciprocal crosses showed no outstanding reciprocal differences.

Intercrosses between two plants from Class 1 seeds, one from a high/low (619) and one from a low/high (819.1), produced only stable seeds when crossed in either direction. The tiller from 619-1 was crossed as a female with a plant from a 1985 Class 4 seed (823-5). This cross produced all classes of seeds, whereas the exact reciprocal cross produced predominantly Class 4 seeds with a few of each of the other classes. Intercrosses between plants from Class 2 seeds from a low/low (621,821) without exception resulted in ears with seeds of low mutability, or Class 1 stable seeds. The latter class was the predominant class on these ears.

The inbreeding of 1985 Class 4 plants was continued (623,823) with sibling seeds of those planted in the 1985-86 family 6558. Although some reduction in the level of somatic mutability was observed, the majority of the seeds

produced were of high mutability. This was also the case for plants that were selfed (data not shown).

Levels of somatic mutability and germinal mutator activity are shown in Table 4 for individual plants from the pedigree of the stocks described in this report. An

Table 4. Comparison of germinal mutator activity and level of somatic mutability through six intercross generations of *a1-Mum2*.

Plant≠	#Generations Selfing or Intercrossing	Germinal Mutator Activity (%)	Level <u>al</u> Somatic Instability (avg. class)
82-2154-5	1	21.7	4
82-83-3582-	-6 2	a	4
83-8207-1	3	0.0	4
8207-2	3	b	4
8207-3	3	0.0	4
8207-4	3	0.0	4
84-1120-4	4	c	4
85- <u>6151-8</u> 5151-31	5	NTO	3.64
85-86-5558-	-1 6	0.0	1.848
-5558	-3 6	27.27	1.85
85-86-5559	-2 6	4.55	1.42
5559-	-8 6	8.70	1.42
85-86-6558-	-2 6	17.95	3.35
-6558	-4 6	19.15	3.71
-6558	-5 6	9.30	3.64
-6558	-6 6	9.09	3.64
-6558	-7 6	0.0	3.62
-6558	-8 6	17.50	3.53
85-86-6559	-5 6	2.27	2.03
-6559	-6 6	0.0	2.21
-6559	-7 6	18.60	2.28

a , b , & ^C Test in 86-87 winter nursery. d No test , no outcross ears available

^e Level is an average of estimated seed counts of approx. 50 outcross ears.

outcross of 82-2154-5 was selfed and seedling-tested for the production of new mutants. Of the outcross ears, 21.7% segregated for new mutations. After one generation of selfing and an intercross generation, 3 of 4 Class 4 siblings tested in the 83-8207 family had no germinal activity. Plants 83-8207-1 and -8207-2 were used in the production of the two Class 4 lines that were crossed in 1985 (see Figure 1). An outcross of 8207-2 has been planted and will be selfed in our 1986-87 winter nursery, then seedlings tested later this spring. This information is needed before we can fully interpret the data in this report. The first time we saw a significant reduction in the level of somatic mutability was in 1985. No outcrosses of the 1985 plants were made and thus germinal activity of these plants could not be determined. However, the 1985-86 families have been tested for germinal mutator activity. Five of the six plants from family 6558 which showed high somatic mutability, had germinal activity. The other outcross had no mutator activity. On the other hand, plants from the low families, 5558, 5559 and 6559, which when outcrossed gave mainly low seed mutability, showed no correlation between loss of somatic mutability and the presence or absence of germinal mutator activity. For example, outcrosses of 5558-1 and 5558-3 both resulted in seeds of low mutability, yet 5558-1 had no germinal activity and 5558-3 had germinal activity. Both 5559 siblings and 2 siblings in family 6559 showed such activity, while one did not.

Table 5. Summary of Southern blot hybridization results to date.

intercross eer#8	Level of <u>a1</u> Somatic Mutability	<u>Mu</u> sizes	Copy # (Total) ^b	Modification (<u>Hin</u> f I)	Germinal Mutator Activity
82-2154-5	4	<u>Mu</u> 1,1.7	15-20		٠
83-8207-1	4	Mu1,1.7	15-20	÷.	
84-1120-4	4	Mu1,1.7	15-20	-	c
85- <u>6151-8</u> d 5151-31	4 3 2	Mu1,1.7 Mu1,1.7 Mu1,1.7	15-20 15-20 15-20	*/8 */ *++/-	t

⁸ Individual plants grown in growth chamber sacrificed for DNA isolation. Results are

consistent between several individual sibling plants.

^D Copy number determined by 1) EcoRi hybridization profile and 2) comparison of Tth1111 1 profile to <u>thu</u>1 copy number equivalents.

C Test in 1986 winter nursery.

d This plant segregated for mainly class 4, with few class 2 and 3 seeds.

^e Relative amounts of modified (+) and unmodified (-) elements.

f No test, no outcross ears available.

A limited amount of molecular work on these lines has been initiated on selected plants in this pedigree. Table 5 summarizes information obtained to date as the result of Southern blot hybridization analyses. Individual plants from the pedigree in Figure 1 have been analyzed for Musizes, copy number, and modification of Mu element Hinfl sites. All plants tested contain both Mu1 and Mu1.7. The total copy number of these elements is approximately 15-20 per diploid genome. The copy number remains constant through the fifth generation of inbreeding. Extensive modification of the Mu elements does not occur until there is a loss of somatic mutability. This marked loss occurred in several of the 1985-6161/5151 crosses. When DNA from plants derived from Class 4, Class 3 and Class 2 seeds (85-86-6161-8/5151-3T) is analyzed for the presence of modification, there is a correlation between the amount of modified sequences and the relative level of somatic mutability. Although this has not been quantified, qualitatively, plants from Class 4, Class 3 and Class 2 seeds show increasing amounts of modified Mu elements relative to unmodified elements respectively. However, it is important to note that both modified and unmodified Musequences are present in all plants tested from this ear.

Germinal mutator activity and modification results for plants 82-2154-5 and 83-8207-1 indicate that in this material there is not a correlation between element modification and mutator activity. This may be further substantiated when the seedling test of 84-1120-4 is completed later this spring.

Plants 82-2154-5 and 83-8207-1 have the same number of Mu elements, none of which are modified, yet 82-2154-5 has germinal Mu activity while 83-8207-1 does not. Thus plants from seeds with high somatic mutability and possessing the same copy number of Mu elements do not necessarily have the same germinal activity. This lack of correlation of germinal activity with Mu copy number and somatic mutability would suggest that neither of these criteria are good predictors of Mu germinal activity. The results presented in Table 5 would suggest that the lack of modification also is not a good predictor of Mu germinal activity. The lack of any criteria that will predict germinal Mu activity suggests that the regulation of such activity is still unknown.

The following conclusions can be drawn from this work:

1) High somatic mutability can be retained after six generations of inbreeding.

2) However, in some sixth generation offspring, somatic mutability has been greatly diminished (low lines). This takes place suddenly in one generation.

3) Results from crosses between plants from high mutability seeds and those from low mutability seeds are the same, no matter what direction the cross is made. Thus there is no female effect observed.

4) When plants from Class 4 seeds from high/low and low/high crosses are crossed together, only stable or very low mutability seeds are observed in the progeny. Low/high and high/low do not behave differently in this regard. Again, no female effect is observed. In these crosses the low mutability state seems to prevail in both high/low or low/high hybrids because most progeny seeds are of low mutability.

5) Plants from seeds of different levels of mutability from the same ear show a progressive degree of modification of the Mu elements present that is inversely proportional to the level of somatic mutability.

6) There is little or no correlation of Mu germinal activity with the total Mu element copy number, the Mu element modification or somatic mutability.

Bradley A. Roth and Donald S. Robertson

Results from a second series of inbreeding crosses of Mutator (*Mu*) stocks

In 1983, I reported on the effect of several generations of inbreeding of Mu stocks (Mol. Gen. Genet. 191:86-90, 1983). In this first experiment, different levels of inbreeding were produced by intercrossing between Mu stocks in which the putative level of Mu was doubled each generation for up to 4 generations of inbreeding. In these previous experiments, it was found that Mu activity, as measured by the standard Mu test (i.e., the frequency of seedling mutants transmitted by a Mu plant to its progeny), peaked at the second generation of inbreeding and fell off rapidly thereafter and was lost by the fourth generation of inbreeding. This inbreeding loss phenomenon has been subject to molecular analysis and has been found to be accompanied by modification of Mu1-like transposons.

In 1982, we undertook to repeat this inbreeding experiment to determine if the first results were repeatable. We have now obtained the Mu^{16} per se generation and the Mu^8 o.c. (See Table 1 for definitions). In this experiment, we not only made the doubling crosses but also some of the intermediate crosses such as (1×3) , (1×4) , (2×3) , (3×4) , $(3/4 \times 1)$ etc. The results of the per se tests and tests of parents are shown in Figure 1 and the results of the outcross tests of the various per se types are given in Figure 2. We have not yet run a statistical analysis on these results and thus only generalizations can be made at the present time.

Results of the previous experiment, with respect to early generations of inbreeding, are confirmed in that there is an increase in mutants at this level of inbreeding. As inbreeding gets more intense there is a general drop-off of activity exhibited in the *per se* populations. But there is considerable variation in response depending upon the particular combination of parents. Some more-or-less consistent patterns can be discerned. For example, whenever an Mu^3 is involved there tends to be a lower level of activity. The more Mu^3 contributes to the per se the greater the reduction in Mu activity; with Mu^{12} per se $(3 \times 3)^2$ showing the least activity. Note also that the straight doubling series (i.e. 1×1 , 2×2 , 4×4 , 8×8) behaves as the previous experiment until Mu^{16} per se. In the previously reported work, there was a sharp drop of activity from Mu^8 per se to Mu^{16} per se. In this present

Symbol

<u>Mu</u>¹ -An Mu line that has only been propagated by outcrossing. $\underline{Mu}^2 \underline{per se}$ - The F₁ generation of a $\underline{Mu}^1 \times \underline{Mu}^1$ cross. $\underline{Mu}^3 \underline{per se}$ - The F, generation of a $\underline{Mu}^1 \times \underline{Mu}^2$ cross. \underline{Mu}^4 per se (2 x2) - The F₁ generation of a $\underline{Mu}^2 \times \underline{Mu}^2$ cross. $\underline{Mu}^4 \underline{per se} (1 \times 3) - The F_1 generation of a \underline{Mu}^1 \times \underline{Mu}^3$ cross. $\underline{Mu}^5 \underline{per se} (1 \ge 4)$ - The F₁ generation of a $\underline{Mu}^1 \ge \underline{Mu}^4$ cross. \underline{Mu}^5 per se (2 x 3) - The F, generation of a \underline{Mu}^2 x \underline{Mu}^3 cross. $\underline{Mu}^6 \underline{per se} (3 \times 3) - \text{The P}_1 \text{ generation of a } \underline{Mu}^3 \times \underline{Mu}^3 \text{ cross.}$ $\underline{Mu}^6 \underline{per se} (2 \times 4) -$ The \underline{P}_1 generation of a $\underline{Mu}^2 \times \underline{Mu}^4$ cross. The \underline{Mu}^4 was a (2×2) . $\underline{Mu}^7 \underline{per se} (3 \times 4) -$ (2 x 2). The $\underline{F_1}$ generation of a $\underline{Mu}^3 \times \underline{Mu}^4$ cross. The \underline{Mu}^4 was a $\frac{Mu^7}{Der se}$ (1/3 x 3) - The F₁ generation of a $\frac{Mu^1}{x}$ $\frac{Mu^6}{Mu^6}$. The $\frac{Mu^6}{was}$ a (3 x 3). $\frac{Mu^7}{2}$ per se (2/2 x 3) - The F₁ generation of a $\frac{Mu^2}{2}$ x $\frac{Mu^5}{2}$ cross. The $\frac{Mu^5}{2}$ was a $\frac{Mu^8}{2}$ per se (4 x 4) - The F₁ generation of a $\frac{Mu^4}{2}$ x $\frac{Mu^4}{2}$ each $\frac{Mu^4}{2}$ was a (2 x 2). \underline{Mu}^{θ} per se (3/4 x 1) - The F, generation of a \underline{Mu}^{3} x \underline{Mu}^{5} . The \underline{Mu}^{5} was a (4 x 1) in which the 4 was a (2 x 2). $\frac{\text{per se}}{\text{and the }\underline{Mu}^{4} \text{ sec}^{4} \times \frac{Mu^{4}}{Mu^{4}} \times \frac{Mu^{6}}{Mu^{4}}.$ The \underline{Mu}^{4} was a (2 x 2) and the \underline{Mu}^{4} a (2 x 4). $\underline{Mu}^{10} \underline{per se} (5 \times 5) - \text{The } F_1 \text{ generation of a } \underline{Mu}^5 \times \underline{Mu}^5$. Each \underline{Mu}^5 was a (2 x 3). $\underline{Mu}^{12} \underline{per se} (3 \times 3)^2$ -The F_1 generation of a $\underline{Mu}^6 \times \underline{Mu}^6$. Each \underline{Mu}^6 was a (3 x 3). $\underline{Mu}^{12} \underline{per se} (2 \times 4)^2$ - The F_1 generation of a $\underline{Mu}^6 \times \underline{Mu}^6$. Each \underline{Mu}^6 was a (2 x 4) in which each 4 was a (2 x 2). $\underline{per se} (4 \times 4)^2 - The F, generation of a \underline{Mu}^8 \times \underline{Mu}^8. Each \underline{Mu}^8 was a (4 \times 4) and each \underline{Mu}^4 was a (2 \times 2).$ Mu¹⁶ per se $(3/4 \times 1)^2$ - The F₁ generation of a Mu⁸ 8. Each Mu⁸ was a Mu Mu¹⁶ x 3/3)² - The F_1 generation of a <u>Mu⁶</u> and each Mu was a (2 x 3).

 $\frac{Mu^2}{respective per se}$ line. (3/4 x 1) o.c., etc. = an outcross of the

 $\frac{Mu^2}{2}$ parents, $\frac{Mu^3}{2}$ parents, $\frac{Mu^5}{2}$ (1 x 4) parents $\frac{Mu^8}{2}$ (3/4 x 1) parents, etc. = The results of a mutator test of the parent lines that produced the indicated $\frac{Mu}{2}$ per se line.

experiment there is instead a sharp increase when going from Mu^8 per se to Mu^{16} per se. We will better be able to determine the significance of this when we can test the Mu activity of Mu^{16} per se plants by the standard Muoutcross test.

Generally speaking the *per ses* have more activity than their parents. This is as expected since the *per se* test is expected to measure the sum of the activity of the parents. However, the *per se* activity very seldom equals the sum of the individual parent activities or twice the parental activity, as the case may be. The only exceptions are Mu^{16} *per se* $(4 \times 4)^2$ and $Mu^{16} (3/4 \times 1)^2$. This tendency of the *per ses* to have fewer mutants than predicted from the parental frequencies suggests either a female effect exhibited by the female Mu parent or a depression of a possible Muactivity that is confined to the zygote or early developmental stages. Such Mu activity has been suggested by previous studies in our laboratory (MNL 60:12-114, 1986).

Figure 2, which gives the results of the outcrossing of the per ses, gives an indication of the Mu activity present in the Mu per ses themselves. Here we see that Mu activity peaks at Mu^4 and falls thereafter. There is a bifurcated pattern, however. One in which Mu^3 is not involved and those with Mu^3 . The depressive effect of Mu^3 that was hinted at in the per se data becomes obvious in the outcross tests. The exact nature of this Mu^3 effect is not known.

The results of this experiment taken together with those from the previous work points up a fact with regard to the Mutator system that cannot be emphasized too strongly. That is, that it is dangerous to generalize from just one experiment or one series of experiments. (For example, one could conclude from the work reported here that Mu^3 s will be strong inactivators. But we do not know if this response is characteristic of Mu^3 s in general or just the Mu^3 in this experiment.) There are probably several reasons for this unpredictability. For example, copy number of Mu elements and state of modification can vary from experiment to experiment and from generation to generation. With just those two variables alone one would not be surprised if two experiments, which superficially appeared to be identical, gave markedly different results. We need to know much more about the Mu system and find some way to standardize our stocks before we can start drawing generalizations from one experiment. This lack of standardization undoubtedly accounts for varying results from different laboratories.

Donald S. Robertson

AMES, IOWA Iowa State University COLUMBIA, MISSOURI University of Missouri

A new isozyme marker for the short arm of chromosome 6

Wendel et al. (MNL 60:109-110) reported isozyme segregation data that suggested Adk1 (adenylate kinase) is located near the centromere on chromosome 6, and tentatively proposed a location on 6S. Subsequent work has confirmed that Adk1 is on 6S, which is significant in that this is one of the most poorly mapped chromosome arms of maize. New F2 data (Table 1), in conjunction with

Table 1. Joint F2 segregation data and maximum likelihood estimates of the recombination fractions (r) for four markers near the centromere of chromosome 6.

	Genotypes ¹												
Loci	n	x ₁ y ₁	x ₁ y ₂	x1x3	x ₂ Y ₁	x ₂ y ₂	x ₂ y ₃	x ₃ Y ₁	x ₃ y ₂	x ₃ y	X ² (df)	t/(se)	
Adkl-rgdl	181	46	0		74	5		10	46		117_3(2)	.081	
Adkl-Pgdl	181	0	14	32	9	57	13	44	12	0	143,3(4)	(.020)	
AdkI-Enpl	181	0	16	30	9	55	15	39	17	0	116,3(4)	.170	
rgd1-Pgd1	181	8	77	45	45	б	0				119.9(2)	.076	
rgdl-Enpl	181	6	79	45	42	9	0				115,1(2)	082	
Pgd1-Enpl	181	46	7	0	2	79	2	0	2	43	291,9(4)	,037 (,010)	

 $^1 X$ and Y refer to the first and second locus listed for each locus pair. Genotypes are as follows: AdA: $x_1=5/5; x_2=4/5, x_2=4/4$. $rgdl: x_1=+\ell + and +/rgd combined; x_3=rgd/rgd, except substitute Y for X in the AdA:rgdl line. Fggll: <math display="inline">x_1=-\ell - 3, \delta/3, \delta: x_2=-\ell/3, \delta: x_1=-\ell/2,$ except substitute X for Y in the rgdl-Enpl line. Enpl: $x_1=10/10; x_2=\ell/10; x_3=-\ell/6,$

the previously presented data, indicate the following gene order and map distances for various markers near the centromere of chromosome 6:

Adk1 - 8.1 - rgd1 - 7.6 - Pgd1 - 3.7 - Enp1

These data are in agreement with previous distance estimates for the loci Adk1, Pgd1, and Enp1. Additional evidence that Adk1 is on 6S was gained from a cross of TB-6Sa (as male) onto the inbred line Mt42, which carries the rate variant Adk1-5. Seven hypoploids (those that display only the tester allele) were recovered out of 51 seedlings analyzed. These same seven plants were heterozygous for numerous other isozyme markers, ruling out the possibility that they resulted from contaminating self-pollinations. These data thus confirm that Adk1 is on 6S. Because neither rgd1 nor Pgd1 is uncovered by either TB-6Sa or TB-6Lc (Enp1 is uncovered by TB-6Lc, however; Wendel et al., MNL 59:89-90) their placement relative to the centromere is still uncertain.

Jonathan F. Wendel and J.B. Beckett

AUSTIN, TEXAS University of Texas

Chiasma frequency in the distal 5% of the long arm of chromosome 1

In a recent study of chiasma frequencies in the various segments of heterozygotes for complex B-A chromosome rearrangements, in one case (TB-1La5S8041) the frequency was unexpectedly low for the segment representing 20% of the terminal region of the long arm of chromosome 1 (M.P. Maguire, Chromosoma 94:71-85). In fact where a chiasma was present in this region there was almost always a chiasma also present in each of the other arms of the complex configuration, including the opposite arm which is also estimated to be genetically short. This raised the question whether the terminal region of the long arm of chromosome 1 may be essentially devoid of "pairing centers" and depends mainly upon zipping-up of pairing initiated elsewhere for the establishment of crossover pairing. The observation was especially surprising since in another recent study estimates of crossover frequencies in a series of overlapping inversions suggested that the genetic map of the long arm of chromosome 1 is approximately uniformly distributed for the region between about 0.55 and 0.92 of the physical length from the centromere, and crossover pairing is efficiently established in regions heterozygous for these inversions (M.P. Maguire, Genet. Res. 46:273-278). Now the chiasma frequency has been studied in heterozygotes for simple reciprocal translocation T1-4g, with breakpoints located at 1L.95 and 4L.35. Given the fortunate presence of a large chromosome 4 knob, diakinesis configurations were not difficult to classify. For the segment representing the distal 5% of chromosome 1L the total observed chiasma frequency was 8.8% (in 62/704 cells). This is close to expectation from assumption of uniform genetic map distribution throughout the arm. It seems likely that either zipping-up for crossover pairing is very efficient in this system (with pairing facilitation across breakpoints) or "pairing centers" in fact exist in the distal region of the long arm of chromosome 1.

M.P. Maguire

BALTIMORE, MARYLAND Carnegie Institution of Washington

Analysis of several derivatives of the *a-m2 Spm* insertion allele

We have done genetic and molecular studies on several derivatives of McClintock's a-m2 Spm insertion allele. These alleles have the unique property that the *a* gene is either co-expressed with, or expressed under the control of, the Spm element, while most Spm insertions inhibit gene expression. We have analysed 9 derivative alleles isolated by McClintock from the original a-m2 allele (now lost). Each derivative has a different mutation affecting the inserted Spm element, expression of the *a* gene, or

Figure 1. Derivation of the a-m2 alleles.

both. The genetic relationship among the derivatives and their designations are shown in Figure 1. Our interest in these alleles stems from the observation that the manner in which a gene is expressed in these derivatives reflects the Spm's own regulatory mechanisms, suggesting that the gene has come under the control of the element and that the behavior of the derivatives therefore offers insight into Spm regulation. Moreover, there are several mutant Spm elements among the derivatives, the analysis of which extends our understanding of the element's genetic organization.

We have found the insertion site to be identical in all of the *a-m2* derivatives; recent analyses of the *a* locus by Schwarz-Sommer et al. (EMBO J., in press) indicate that the insertion site is 99 bp upstream of the *a* gene's transcription start site. The derivatives differ from each other by mutations either within or very near the element. Based on genetic analyses, two of the derivatives have standard Spm (Spm-s) elements (a-m2-7991A1 and -8010A), two have late-acting weak Spm (Spm-w) elements (a-m2-8011 and -8745) and five have transpositiondefective Spm (dSpm) elements (a-m2-7995, -7977B, -8004, -8167B, and -8417). The two derivatives with Spm-s elements have 8.3-kb insertions, while most of the derivatives with Spm-w or dSpm elements have shorter insertions which differ from the 8.3 kb Spm-s element by internal deletions. The type and length of the Spm element in each derivative is given in Figure 1. Most derivatives have a single insertion at the a locus, but the a-m2-8745 allele has two insertions, the 6.6-kb Spm-w insertion of the a-m2-8011 allele from which it was derived and a second nearby insertion (or duplication) that has no effect on the element, but inactivates the *a* gene. Most derivatives have a single large deletion within the

Spm element, while the a-m2-8417 derivative has two deletions, consistent with its derivation in two steps from the original a-m2 allele.

The 8.3-kb Spm-s element of the a-m2-7991A1 allele has been cloned and sequenced; its structure is shown in Figure 2. The Spm-s element is virtually identical with the Enhancer (En) element sequenced by Pereira et al. (EMBO J. 5:835, 1986); it is shorter by 4 bp and differs at 6 additional nucleotides, only one of which affects the structure of the putative protein encoded by the element's major transcript. The two Spm-s alleles differ from each other and from the original a-m2 allele primarily in the respective levels of a gene expression and the phenotypes of stable alleles resulting from excision of the element. We believe these differences may be attributable to small changes at the insertion site immediately adjacent to the element because we have found a 3-bp insertion adjacent to the sequenced Spm-s element that is not present in any of the other alleles analysed.

The 6.6-kb Spm-w element cloned from the a-m2-8011 allele has an internal deletion, the location of which is shown in Figure 2. The abundance of the 2.3-kb major Spm transcript homologous to sequences in the element's right half (Figure 2) is lower by a factor of 5-9 in plants with an Spm-w element than in plants with an Spm-s element. The Spm-w element transposes less frequently and later in development than an Spm-s element, but retains the element's 'suppressor' function, as judged by its ability to inhibit expression of an Spm-suppressible insertion allele, such as the commonly used a-m1-5719A1allele of McClintock. Since the deletion in the Spm-w-8011 element eliminates parts of both large open reading frames (ORFs) located in the element's left half, we conclude that the integrity of neither ORF is essential for expression of either known element-encoded function. The low transposition frequency of the Spm-w element is correlated with a reduction in the element's major transcript, suggesting that the transcript encodes the element's transposase. The observation that the element in the a-m2-7995 allele is completely transposition defective and has an overlapping deletion that eliminates sequences hybridizing to the 2.3-kb Spm transcript supports this inference (Figure 2). The structure of the closely related En element's transcript is reproduced from Pereira et al. (op. cit.) in Figure 2. Since there are no differences in structure between the En and Spm elements that are likely to affect transcription, it is likely that the Spm transcription unit is the same as that of the En element. The Spm-w deletion is confined to the large intron that occupies most of the element's left half. We do not know whether the deletion's quantitative effect on Spm mRNA abundance is the result of decreased RNA stability or processing or the consequence of decreased transcription initiation.

Several lines of evidence suggest that the Spm's'suppressor' and 'mutator' functions are not encoded by separate, complementing genes. All of the dSpm elements in the present series were tested genetically for each function and all lack both functions. The a-m2-8167Ballele, which has a full-length element, was also tested for its ability to complement an Spm-w element and it could not. These observations, taken together with the observation that the Spm-w-8011 deletion eliminates neither function, suggest that the element's two genetically defined functions either reside in the same protein or in proteins that share a subunit or domain and therefore coding sequences.

The frequency with which an internally deleted Spm element can be trans-activated to excise depends on its structure. Among the deleted elements whose structure is depicted in Figure 2, the Spm-w-8011 element excises at a very high frequency in the presence of an Spm-s, the dSpm-7995 and -7977B elements excise at an intermediate frequency, and the dSpm-8004 element excises at a very low frequency. It has been shown in other studies (Schiefelbein et al., PNAS 82:4783, 1985; Schwarz-Sommer et al., EMBO J. 4:2439, 1985) that deletions that leave 1-1.5 kb of each element end do not affect excision frequency, while deletions that extend to within a few hundred nucleotides of an element end reduce excision frequency. The Spm element has 13-bp terminal inverted repeats (CACTACAAGAAAA) and a subterminal repetitive region at each end comprising several copies of the 12-bp sequence CCGACACTCTTA repeated in both orientations. It has been suggested by Schwarz-Sommer et al. (EMBO J. 4:2439, 1985) that the subterminal repeats form intramolecular duplexes in transposition and that deletions extending into the subterminal repeats reduce transposition frequency by disrupting secondary structure. Sequence analysis of cloned copies of the dSpm-7995 and -7977B elements has revealed that the deletions extend into the subterminal repetitive region at the element's right end, eliminating 5 and 4 of the repeats, respectively. The excision frequency of these elements is lower than that of the longer Spm-w-8011 element, but not much lower. We also find that the endpoints of intra-element deletions often occur within or at one end of the subterminal 12-bp repeats or a homologous sequence elsewhere within the element. Since it has been known for some time that intra-element deletions are element-catalysed, the implication is that an element-encoded protein capable of promoting the cleavage and religation of DNA (the transposase?) recognizes the 12-bp repeats. Thus we offer the alternative suggestion that the 12-bp sequence repeated near element termini is a recognition sequence for binding of an element-encoded protein, possibly the transposase itself.

Sequence analysis of the virtually immobile dSpm-8004 element suggests the existence of an additional, nonrepetitive determinant of excision (and, presumably, transposition) frequency. The dSpm-8004 element retains all of the repeats at both element ends and has normal termini. The sequence present in the more frequently excising 1.3-kb dSpm-7977B allele that is missing from the 1.1-kb dSpm-8004 allele comprises most of the element's first exon and a few hundred nucleotides of its first intron. Thus it appears that a non-repetitive sequence near, but not including, the element's transcription initiation site influences the element's mobility.

Perhaps the most interesting aspect of the a-m2 alleles is that the Spm element controls expression of the a gene. The original a-m2 allele exhibited an intermediate level of a gene expression, giving a palely pigmented kernel phenotype with small, deeply pigmented spots of normal agene expression resulting from excision of the element. Expression of the a gene was affected by reversible changes in expression of the element, as well as mutations within the element. McClintock (CIW Yrbk. 61:265,1962) reported that when the Spm-s element of the original allele became inactive, so did the *a* gene. The *a*-*m*2-7991A1 allele resembles the original allele in *a* gene expression and we have isolated a derivative in which both element and locus are reversibly inactivated. We have observed that the inactive Spm element can be readily reactivated by the introduction of an Spm-w element, although we do not yet know whether the reactivation is heritable. This behavior suggests that 1) the *a* gene has come under the control of a mechanism that inactivates the Spm element and 2) that an element-encoded gene product can overcome inactivation of the element.

These inferences are strengthened by the behavior of the dSpm alleles. The phenotype of all of the dSpm derivatives studied here is colorless in the absence of an Spm-s. However, in the presence of an Spm, all except the a-m2-8417 allele exhibit intermediate a gene expression. Hence intra-element deletions that inactivate the element also inactivate the gene. Yet expression of the a gene in dSpm derivatives remains under Spm control: the gene is expressed when an Spm element is present elsewhere in the genome. It follows that an Spm-encoded gene product can reactivate expression of the gene in a-m2 derivatives with *dSpm* elements, just as it can reactivate an inactive Spm element. Thus it appears that expression of the agene of the *a*-m2 alleles reflects the operation of the Spm's own regulatory mechanisms and suggests that the element encodes a positive regulatory function. Most of the derivatives used in the present study can be and have been tested for their ability to activate expression of the *a* gene of *dSpm* derivatives. We find that the *Spm-w* element can trans-activate a gene expression, while none of the dSpm elements can, suggesting that the element's positive regulatory function is not encoded by a separate, complementing gene.

Because *dSpm* elements as short as 1.3 and 1.1 kb are sufficient to mediate a gene activation, it appears that the target sequences for the element's regulatory protein are near its left end, which is located near the a gene's transcription start site. Differences among the dSpm derivatives in the capacity for Spm-dependent expression suggest that the minimal requisite element sequence is probably less than 300 bp of the element's left end, comprising the terminal inverted repeat, the subterminal repetitive region and the element's transcription initiation site. However, elements with at least an additional 1 kb of the element's left end express the a gene at a substantially higher level, suggesting that an internal element sequence can serve as an enhancer of a gene expression. The observation that Spm control of a gene expression is mediated by sequences around the element's own site of transcription initiation suggests that the element's positive regulatory mechanism functions at a transcriptional level. Thus we propose that an elementencoded protein interacts with sequences around the element's transcription start site to activate transcription of the element. We also suggest that the element's positive regulatory function can overcome the negative mechanism that reversibly inactivates the Spm element (as well as the a gene). The regulatory scheme that we propose is depicted in Figure 3.

Figure 3. A model of *Spm* autoregulation. The open circles represent *Spm*-encoded proteins involved in transposition and positive autoregulation. The x's represent the mechanism by which the element is inactivated.

Although the nature of the negative mechanism that inactivates the Spm element has not yet been elucidated, there is growing evidence that maize transposable elements are inactivated by methylation (Chandler and Walbot, PNAS 83:1767, 1986; Cone, Burr and Burr, PNAS, in press). The results of the present study suggest that the inactivation system is probably not element encoded. This follows from the observation that the *a* gene is inactive in derivatives with extensive intra-element deletions. However, the possibility cannot be excluded that defective Spmelements in the genome participate in the inactivation process.

There is some evidence that Spm's regulatory system not only overrides the negative mechanism, but can also interfere with it heritably. McClintock (CIW Yrbk. 63:592, 1964) reported that the a gene of the a-m2-7995 and -7977B derivatives could be 'preset' for expression after segregation of the resident Spm element away from the allele at meiosis. Under such circumstances, kernels appear to commence development with an actively expressed a gene that returns to the inactive state during development. yielding kernels with an irregular and distinctive pigmentation pattern. Assuming that the same mechanism effects a gene inactivation in the a-m2 dSpm derivatives and reversible inactivation of the Spm element, it follows that an Spm-encoded gene product can both directly overcome the inactivating mechanism and interfere with its propagation. This interpretation is supported by our previous report (MNL 60:18) that an Spm-w element substantially enhances the frequency of activation of cryptic elements. We suggest, therefore, that the Spm element's positive autoregulatory circuit functions to maintain the element in an active state both by promoting expression of the element directly and by interfering heritably with a negative, probably non-element-encoded, inactivating mechanism (Figure 3).

> J. Kingsbury, P. Masson, R. Surosky and N. Fedoroff

BATON ROUGE, LOUISIANA Louisiana State University

Tissue-specific hypomethylation of maize rDNA

Last year we reported on a survey of the patterns of ribosomal DNA (rDNA) fragments in inbred lines of maize produced by digestion of leaf tissue DNA with the methylation-sensitive restriction enzyme HpaII. Inbred lines were heterogeneous with respect to the number of bands produced by HpaII digestion of nuclear DNA with either one, two, or three bands being present. R. Phillips et al. (Keystone Conference, 1985) have reported that DNA purified from leaf tissue of A188 has a single hypomethylated HpaII site, but DNA from endosperm tissue harvested at 17 days after pollination (DAP) displayed four bands indicating that additional HpaII sites were undermethylated.

We have initiated a survey of rDNA patterns from specific tissues of our previously assayed inbred lines to determine if there is a relationship between the heterogeneous methylation pattern in leaf tissue and the methylation pattern of other tissues. Figure 1 shows the result of

Figure 1. SX19 DNA, isolated from seedling leaves or from endosperm collected at 13 DAP, was digested with *HpaII*, and fragments were separated by electrophoresis on 0.8% agarose gels. Fragments were transferred to nitrocellulose by Southern blotting and probed with a maize rDNA probe (pZmr1) containing the entire repeat unit (M.D. McMullen et al., Nucl. Ac. Res. 14:4953, 1986). Fragment sizes were derived from lambda DNA cut with *HindIII*. We wish to thank Pioneer Hi-Bred International, Inc. for providing SX19 seeds, and M.D. McMullen for providing the plasmid pZmr1.

HpaII digests of DNA isolated from the hybrid SX19 (B73 X Mo17). *HpaII* digestion of SX19 rDNA from leaf tissue produced a single 9.1 kbp band and left a significant uncut fraction. This result is identical to those we reported for the inbred parent lines in our communication last year. *HpaII* digestion of 13 DAP endosperm rDNA produced three distinct new bands at 5.2, 3.5, and 2.6 kbp. The 9.1

kbp band is no longer visible, and there is considerable background smear in this lane indicating that, in general, the rDNA is less methylated. However, a significant fraction of the rDNA still is not accessible to *HpaII* cleavage in the endosperm tissue. These results are similar to those previously reported by Phillips et al. in 17 DAP endosperm from A188. We are now examining rDNA hypomethylation in other tissues from this hybrid, in specific tissues from its progenitors, and from B37N.

Vishal Sachdev, Eldon Jupe and Elizabeth Zimmer

BERKELEY, CALIFORNIA University of California

Programmed periclinal divisions of epidermal cells during glume development

We are using X-ray induced marked somatic clones to study floral development in plants carrying the Miniplant (Mpl) mutation. Mpl is a mild dominant dwarfing mutation, possibly allelic to D8, causing the formation of anthers in the florets of the ear. The clones are marked with the absolutely white phenotype conferred by the recessive lemon-white (lw) allele approximately 60 map units out on the long arm of chromosome 1. Mpl is also on this arm and is approximately 4 map units distal to lw. Plants heterozygous for lw (Mpl Lw + lw) are irradiated (X-ray, 1000R) shortly after germination. Tissue derived from cells that have lost a region of the chromosome arm carrying the functional (Lw) allele are seen as white sectors in the mature plant. Each sector represents a patch of tissue developed clonally from a single cell. We have observed a number of sectors in ear husks. These husks were removed in order to permit greening of the florets, cupules and stem tissue beneath. In the normal ear exposure to light causes greening of the stem, cupules and glumes, just as it does in the homologous organs of the tassel. We identified several lw sectors which extended into the floral tissues resulting in completely white glumes, cupules and stem. These have enabled us to determine that the Mpl character is cell autonomous (manuscript in preparation). We also observed sectors which were almost completely white in appearance except for the presence of some narrow green streaks beginning at the glume tips and radiating outwards and downwards (Figure 1). Analysis of the white cupule tissue adjacent to these florets by fluorescence microscopy (illuminated at 395-440nm, fluorescence observed at 470nm) revealed the presence of epidermal guard cells containing chlorophyll indicating that this region consisted of a -/lw mesophyll covered by a Lw/lw epidermis.

These observations suggest the occurrence of programmed periclinal cell divisions of the epidermis during glume development. These divisions into the plane of the glume result in Lw/lw internal cells derived from the epidermis. The divisions are programmed because the green streaks are found in glumes of 15-20 adjacent florets in the same sector. They are programmed loosely because the streaking pattern in each floret is similar but not identical. It is interesting to note that the tip of the leaf, a homologous organ to the glume, is almost entirely derived from periclinal divisions of cells in the epidermal layer. This similarity between the glume and the leaf tip was pointed out to us by Scott Poethig. Maybe the differences in spatial

Figure 1. Two female florets from a sectored Lw/lw ear. In this sector the tissue was completely white (-/lw) except for the green streaks in the glumes (G) as indicated by the shading. The C indicates the cupule tissue that was examined by fluorescence microscopy and found to have Lw/lw epidermis.

organization of these epidermal divisions represent 'glume' and 'leaf' variants of homologue specific epidermal cell division programmes.

Nicholas Harberd, Sarah Hake and Michael Freeling

BLOOMINGTON, ILLINOIS Funk Seeds International

Mutation rates from sodium azide treatments

Last year (MNL 60:26, 1986) we reported on treatment procedures and physiological damage from treating maize kernels with sodium azide (NaN₃). This material has been selfed twice so that in the summer of 1986 we observed seedlings and plants (M3) for mutations (Table 1). The material is displayed similarly to last year's report in that maturity of the line and germplasm type are noted.

Table 1. Inbred designation, maturity, germplasm type and mutagen information from sodium azide kernel treatments No.

Inbred	Maturity ¹	Germplasm Type ²	NaN ₃ conc. Mol.	rows M3 plants	No. mutants	Mutation rate
42	M	LA	.001	100	24	24.0
42	М	LA	.01	11	1	9.1
43	Μ	LA	.001	20	8	40.0
51	М	LA	.001	11	2	18.2
32	E	SS	.001	100	22	22.0
33	M	SS	.001	9	1	11.1
54	M	SS	.001	11	0	0
B73	M	SS	.001	1	1	100.0
64	\mathbf{L}	SS	.001	50	5	10.0
				212	64	20.4

¹E, M, L - early, medium or late maturity respectively ²LA, SS - Lancaster or Stiff stalk germplasm respectively

In this study the following seedling and plant mutations were observed: various chlorophyll mutants, chlorotic leaf striping (both length and width), seedling lethality, leaf tip lethality, narrow leaf, crinkly leaf, round white spots on leaves, stature mutants and green plant base. All of these mutations were observed prior to pollination.

The 0.01M concentration under our treatment procedures is too high a dose since in Table 1 there is only one inbred, 42, that had survivors that were propagated to the M3 plant generation. However, in this instance the lower 0.001M concentration gave a higher mutation rate. The overall mutation rate is 20.4%.

Robert W. Briggs and Andrew R. Bettendorf

BLOOMINGTON, INDIANA Indiana University

Do strong Ac2 alleles represent duplications or triplications of a single Ac element?

When Ac2/Ac2; bz2-m/bz2-m plants are used as male parents in crosses to bz2-m ac testers, the endosperms of ac ac Ac2 constitution show no dots. Occasional kernels are found with numerous dots and these have proved either to possess a more potent Ac2 allele (which we have designated \overline{AcAc}) or to have two unlinked Ac's. These alternative types were equally frequent and we were unable to predict from the number of Bz dots whether a kernel had \overline{AcAc} or possessed two unlinked Ac's. We have attempted to test the hypothesis that the potent Ac2 allele is actually a duplication. These tests involve the closely linked marker genes, virescent-16 and male-sterile-8, flanking the Ac2 locus on chromosome 8 (recombination between v16 and ms8 in several compounds varied from 3.3% in female heterozygotes to 7.4% in male heterozygotes with the Ac locus showing about 0.6% recombination with ms8.) Crosses of V16 AcAc Ms8/v16 ac ms8 females with v16 ac ms8/v16 ac Ms8 males give a 1:1 ratio for kernels with many dots to kernels with no dots, as well as occasional kernels (about 1-2%) with a low dot number. The low-dot cases were at first believed to result from crossovers separating the two Ac elements. If so, they should possess either v Ms or V ms markers. Of course, half of the plants with the V ms crossover would be phenotypically V Ms due to the unavoidable heterozygosity for ms in the male parent, but these could be identified by testcrossing. The observed marker distribution in a group of 42 low-dot cases was: 8 V Ms: 19 v Ms: 0 v ms: 15 v ms. Further tests were made to confirm that the low-dot endosperm cases possessed a weak form of Ac2 in the embryo as well as in the endosperm, to establish the linkage relations of the Ac allele, and to check the classification of the v16 and ms8 phenotypes. At this time, 16 of the low-dot cases have been analyzed. Some bias is introduced in the composition of the tested group of plants due to greater viability of green over virescent plants and to the time needed in genotyping plants of v ms phenotype where dominant marker alleles must be introduced before linkage of Ac on chromosome 8 can be tested. The 16 fully analyzed plants consisted of nine plants with Ac linked to chromosome 8, 8 V Ms and 1 v Ms, and seven plants with transposed Ac, 6 v Ms and 1 v ms.

There was no evidence that crossing over between vand ms was involved in the origin of the low-dot cases. The near equality of v Ms and v ms phenotypes in the group of 42 (due to the Ms/ms constitution of the male parent) suggests that most of the v plants are noncrossovers of tr-Ac/ac constitution arising when one component of the presumed duplication was transposed to a heterologous chromosome. Tests for linkage indicated that seven of the eight virescent plants possessed a transposed Ac (tr-Ac). The absence of the V ms phenotype indicates that the VMs plants are either V Ac Ms/v ac Ms or V Ac Ms/v ac ms and not V Ac ms/v ac ms. The linkage phase of the flanking markers in the V Ms plants is the same as in the parent chromosome but one Ac component has been lost from the \overline{AcAc} allele. Linkage tests with eight such plants showed the Ac was linked to chromosome 8 in every case.

Although attempts to demonstrate the duplicated nature of strong Ac alleles by association of crossing over with the origin of weak derivative alleles gave negative results, we still favor the interpretation of strong Acalleles as duplications or triplications for the following reasons:

1. Similarity of the dot number in the endosperm of kernels with Ac/ac/ac; tr-Ac/ac/ac constitution and that found in $\overline{AcAc/ac/ac}$ kernels. When unexpected dotted kernels occur in testcrosses of Ac/Ac male parents, the phenotype of those kernels shown to possess two independent activators is similar to that of individuals having the presumed duplication at the original locus. In female testcrosses, the Ac/ac; tr-Ac/ac plants produce 1 high-dot: 2 low-dot: 1 no-dot kernel ratios while $\overline{AcAc/ac}$ plants give 1 high-dot: 1 no-dot ratios. Kernels in the high-dot classes in two testcrosses, although differing in genotype, cannot be distinguished phenotypically from each other.

2. Few, if any, one-step changes from a potent allele to a null form. In testcrosses of V AcAc Ms/v ac ms female parents, a change from \overline{AcAc} to ac by excision of the \overline{AcAc} as a unit would give a chromosome 8 with V ac Ms markers. From 1031 no-dot kernels, there were eight green normal and thirteen green male-sterile plants in addition to 894 virescent individuals. If the AcAc was completely excised, all the green plants should have normal tassels. Since more than half of the green plants were male-sterile, the 21 green plants can be accounted for as crossovers possessing the V ac ms chromosome with either the v ac ms (the thirteen green male-sterile) or the v ac Ms (eight green normal) chromosome contributed by the male parent. The absence of plants with a V ac Ms chromosome argues against the simultaneous loss of both Ac components and is in agreement with the map of v16 -Ac - ms8, a region so short that no double crossovers are expected.

Further evidence of the same sort comes from testcrosses of putative V AcAc ms/v AcAcAc Ms female parents where one chromosome possessed a noticeably stronger Ac than the homologue. Twenty-five kernels with low or no dots were selected from a testcross population of 897. Twentyone of these produced plants possessing a VAc ms chromosome (11 green normal and 10 green male-sterile) indicating a stepwise loss of a single component from the weaker of the two parental alleles. Tests of linkage with v16 showed the remnant Ac is still on chromosome 8. The remaining four individuals consisted of one v Ms, two v ms, and one V Ms plants. The two v ms plants are crossover individuals derived either by loss of one component of the \overline{AcAc} allele with a concomitant crossover between Ac and v16 or by a crossover within the Accomplex following oblique synapsis of the components. The v Ms individual can also be accounted for by the same events but it received the Ms marker from the male parent. The linkage of Ac has not yet been determined in these three plants. The only exception to the proposed hypothesis of stepwise loss of Ac components is the single V Ms plant which seems to have lost both Ac components

from the $V \ \overline{AcAc}$ ms chromosome but possesses the Ms allele from the male parent. In the great majority of cases where changes occurred in the Ac allele, a stepwise loss of a single component appears most likely. Similarly, newly transposed Ac alleles seem to consist of a single component. Cryptic transpositions of Ac from $\overline{AcAc/ac}$ parents were identified by repeated testcrossing of all the dotted progeny and searching for ears with 3 mutable: 1 stable ratios. These represent $\overline{AcAc/ac}$; tr-Ac/ac individuals and the tr-Ac's have turned out to be weak Ac alleles with only one exception. A strong Ac allele consisting of a single element should be able to give rise to equally strong transposed alleles. For these reasons, we favor the duplication hypothesis as the explanation of strong Ac2 alleles, but confirmation or rejection must await molecular analyses.

M.M. Rhoades and Ellen Dempsey

Do transposed Ac2 elements arise by extra replication of existing elements or by excision from a parent allele?

Transpositions of Ac elements from \overline{AcAc} alleles so far detected have included the low-dot cases mentioned above. where it is believed that a single component was transposed from the parent \overline{AcAc} to a heterologous chromosome. In addition, transpositions have been identified in plants still possessing the parental AcAc (i.e., AcAc + tr-Ac). Other possible transpositions are very strong alleles (AcAcAc) where the additional component may have come by transposition from the sister chromatid bearing \overline{AcAc} . We do not now believe these Ac elements arise by extra replication although this is very difficult to rule out. The evidence favors excision of one Ac component from a chromosome 8 chromatid having the AcAc allele and its insertion into either a homologous or heterologous chromatid. The remnant single Ac component on chromosome 8 has been found among our low-dot kernels from AcAc/ac parents and similar remnant Ac alleles (weak alleles on chromosome 8) were present in testcross progeny of AcAc/AcAcAc plants. Thus, changes in Ac constitution at the original location do occur and these weaker alleles cannot arise by extra replication. However, both the weak alleles (remnant Ac's) and the transposed Ac's can be explained by excision of an Ac component followed by its loss in the first case or its transposition and recovery in the second case. There is no need to invoke extra replication; all of the data can be accounted for by the excision hypothesis and by assuming the stronger Ac alleles are either duplications or triplications.

M.M. Rhoades and Ellen Dempsey

Bz reversions in the bz2-m Ac2 system

Endosperms with three doses of the bz2-m responding allele and two or three doses of the Ac2 controlling element display dots of Bz tissue. With rare exceptions, the dots are uniformly small indicating the bz2-m to Bzmutation occurs late in development of the endosperm. The bz2-m to Bz mutations also occur in plant tissue when high activity Ac elements (AcAc) are present but with a reduced frequency. Again, the Bz sectors consist of a small number of cells and have been observed only in the anther wall. The question arose about the timing of bz2-m to Bzgerminal mutations: is the opportunity for germinal mutation also restricted to a specific time and place?

A number of bz2-m plants of \overline{AcAc}/Ac and \overline{AcAc}/ac genotypes were used as male and female parents in crosses to bz2-m ac testers. A population of 21,892 kernels from female testcrosses showed only bz2-m mutable or bz2-m stable phenotypes, i.e., no Bz revertants were obtained. Reciprocal crosses produced 36 Bz kernels in a population of 8744, a frequency of 0.4% reversions in the male inflorescence. Not only does it appear that germinal mutation is confined to the staminate inflorescence but it could be localized even more precisely to a specific mitosis in the microspore. A number of Bz kernels from testcrosses of AcAc/ac or Ac/ac male parents were selected for further study. All thirteen cases analyzed proved to have the Bzallele in the embryo as well as in the endosperm and possessed either the AcAc or Ac allele from the heterozygous parent. If the bz2-m to Bz event took place before meiosis, one half of these cases should possess ac because of independent assortment of Bz on chromosome 1 and Ac2on chromosome 8. All Bz reversions possessed an Ac allele. If the *bz2-m* to *Bz* event occurred at the second microspore division, noncorrespondence of the two sperms would result and Bz endosperms should be associated with bz2-m embryos or vice versa. The 13 Bz cases all showed concordance of embryo and endosperm and, in a comparable test of Bz reversions from Ac/Ac and $\overline{AcAc}/\overline{AcAcAc}$ male parents, a total of 22 Bz individuals showed concordance in 21 and noncorrespondence in only one. The data clearly indicate that the first microspore division is the time when b22-m to Bz mutations occur. Mutations after meiosis and before the second microspore division would lead to concordance of endosperm and embryo and the newly arisen Bz allele would be associated with Ac; this was observed.

It is not surprising that a somewhat higher rate of Bz germinal reversions was found in testcrosses of $V \ \overline{AcAc} \ ms/v \ \overline{AcAcAc} \ Ms$ male parents. In a population of 1189, twelve reversions occurred, a frequency of 1.0%. All but one of the Bz plants carried the v marker of the more potent \overline{AcAcAc} allele.

M.M. Rhoades and Ellen Dempsey

BOMBAY, INDIA Bhabha Atomic Research Centre

Studies on a somatically unstable line

A maize ear isolated locally (by Poornima Rao) showing somatic instability for anthocyanin pigmentation in the aleurone tissue (purple dots and sectors), which is indicative of the presence of transposable elements, has been grown for two generations. Self-pollinated progenies of this ear showed unusual segregation for endosperm and plant characters. The following mutations have been isolated from this unstable line.

Chlorophyll mutations: High frequency of chlorophyll mutation has been observed in selfed progenies. Nearly 44 selfed ears showed abnormal segregation for yellowish green, virescent, japonica, zebra stripes and albino. A few of the yellowish green mutants are breeding true.

Opaque/floury: Nearly 6 out of 803 selfed ears showed sectors of varying sizes of opaque/floury phenotypes. In two cases a few kernels had fully opaque phenotype.

Shrunken: In the first generation, one ear showed few kernels (4 out of 152) with shrunken-like phenotype.

These shrunken kernels bred true, but the expression of shrunken phenotype was varying from near shrunken to hollow endosperm. Ears derived from non-shrunken kernels from the same line showed shrunken sectors of varying sizes. Three more shrunken-like mutations have been isolated from 803 selfed ears in the second generation.

Instability in the aleurone tissue: Instability for anthocyanin pigmentation was also observed in the second generation.

These mutations are being studied for their breeding behaviour and allelism tests. Studies on the presence of Mutator element will be undertaken with the help of Muand Ac clones.

Snehlata B. Allagikar, S.E. Pawar, and N.K. Notani

BOMBAY, INDIA

Tata Institute of Fundamental Research

Differentiation and functional organization of the shoot apical meristem

I would like to summarize my thinking about the differentiation and functional organization of the shoot apical meristem of maize. The analysis of cell lineages during embryogenesis shows that the planes of early cell division neither specify the axis of bilateral symmetry nor demarcate the separation of major parts of the embryo or plant (R.S. Poethig et al., Dev. Biol. 117:392, 1986). This observation and the fact that more than one pattern of cell lineages during embryogenesis can be present in a plant strongly argue against the developmental significance of early cleavage patterns. In carrot, cell lineages of zygotic embryos correspond to Solanad type while those of the somatic embryos correspond to the Onagrad type (A.A. McWilliams et al., Ann. Bot. 38:243, 1974). In plants, by and large, the position of a cell rather than its lineal descent seems to determine the cell's fate.

The progenitors of the plumule-radicle axis become morphologically distinct approximately 10 to 12 days after pollination in the transition stage embryos (L.F. Randolph, J. Agr. Res. 55:881, 1936). The determination of the shoot meristem occurs just prior to or during its differentiation (Poethig et al., 1986). Auxin transport in immature embryos is known to be strictly basipetal and during embryogenesis physiologic polarity (auxin transport and auxin-cytokinin ratio) precedes morphogenetic polarity (S.C. Fry and E. Wangermann, New Phytol. 77:317, 1976; T. Przybyllok and W. Nagl, Z. Pflanzenphysiol. 84:463, 1977). It is reasonable to propose that because of polar transport, auxin accumulation at the radicle end could result in the induction and determination of the root meristem. The number of embryonic cells giving rise to root meristem is not known at this stage. Auxin and cytokinin could also be involved in the determination of the shoot meristem.

The fate of cells becomes progressively more restricted. The restriction process proceeds centripetally starting in the presumptive meristem field during the determination of the shoot meristem (Poethig et al., 1986) and continuing in the cells of the shoot apex during the formation of individual nodes (Figure 1).

The destiny of L-I cells of the apical meristem is shown schematically in Figure 1. These are two zones where cells

Figure 1. The destiny of L-I cells in the shoot apical meristem of the corn embryo (dry kernel stage) is depicted at the left. The solid arrows indicate the direction and location respectively of rings, differentiating nodes, radially expanding and lengthening internodes as deduced on the basis of lineage analysis. Shoot apex in longisection is shown at right.

have become committed to produce specific structures. The cells at the distal end and at the base are committed to produce, respectively, the tassel and the lower 6-7 nodes. The cells in between the two zones are relatively uncommitted and show a gradation of proliferation capacity. What does this gradation signify? Clearly these cells are in transition from an uncommitted state (i.e., cells of the ring) to become committed (the committed state being represented by cells destined to produce a specific node). The gradation therefore reflects the successive steps on the way to node differentiation from a 'ring'. While the embryo is developing, the potential of the cells committed to produce a node starts getting expressed and leads to the formation of leaves and internodes. The formation of nodes can be thought of as a wave of commitment process progressing towards the distal end. The development of the corn plant thus involves three successive and interrelated events, (a) formation of 'rings', (b) a commitment process to produce single nodes, and (c) expression of this commitment leading to the development of internodes. These events are separated from each other temporally and spatially only slightly and the shoot apical meristem represents a structure where the above events have been frozen at a specific instant of time in development.

To present an overview, it is visualized that first a rough outline of the shoot is laid down. This outline consists of tassel initials and a stack of 'rings' each of which is capable of producing a group of nodes. Then in the later part of embryonic development and continuing during the post-germination phase, a refinement process seems to occur. This process results in the production of specific individual nodes.

M.M. Johri

CAMPINAS, SÃO PAULO, BRAZIL Instituto Agronômico

A summing up of the latente systems, latente-1 stomatal control and linkages in chromosome 2S

In MNL 58:46-48 and 48-50 we demonstrated linkages of the Latente loci in a Cateto line: Lte2 in chromosome 10 near position 56, and Lte1 19 units from B in chromosome arm 2S. This was shown by heat tolerance for the first locus and by aluminum tolerance for both loci. For heat and aluminum tolerance the Cateto system depends on the action of two pairs of complementary dominant genes. So far the latente-1 from Michoacán has shown effects only on chromosome 2 (see also MNL 56:28-30). Using the heat test *lte1* is linked with wx T2-9b and Inv2a, and not with wx T9-10b. So far our results show that the Cateto *Lte1 Lte2* is dominant or epistatic over the Michoacán *lte1* system.

In crosses with non-Cateto flint, and dents, the *lte1* is dominant. The latter statement is confirmed by the results of R.M. Castleberry and R.J. Lerette (Proc. 34th Ann. Corn and Sorghum Res. Conf., 1979). These germplasms have a bottom-most allele, for which we propose the symbol *lte-0*, or *lte-b*, for bottom.

L.T. de Miranda, L.E.C. de Miranda and E. Sawazaki in Ecological Genetics and Maize Breeding in Pt, Cargill Foundation ed. 30p. 1984, Campinas, SP, Brazil, and O. Brunini, L.T. de Miranda and E. Sawazaki in the Conference Internationale, Paris 11-14 September 1984, Les besoins en eau des cultures, in two papers in English, p. 205-212 and 361-368, present extensive comparative measurements of physiological effects in latente-1 and other maize genotypes. We suggested *lte1* has near it a factor for stomatal control, which is the object of this report.

A floury-1 originally received from Pennsylvania was crossed and backcrossed four more times before selfing to the dent lines IAC SLP103 (which is an old line selfed from the Yellow Tuxpeño collection San Luis Potosi 103, from former Oficina de Estudios Especiales, now CIMMYT) and IAC 723 (an old line selfed from Tuxpan, a Tuxpeño variety from Texas, reportedly obtained by introgressing yellow colour from Creolle Yellow Flint to a typical White Tuxpeño). So we had SLP103fl1(5) and a 723fl1(5). These *fl1* lines were crossed and backcrossed to two different *Fl1* lte1 IAC Maya latente lines. The Fl1 and fl1 seeds we planted in split-plot in the field nursery in Campinas, SP, Brazil. The readings were done between 1400 and 1600 since at this period the papers cited show the greatest differences among genotypes, on March 17, for the first and March 18, 1986, for the second family. The measurements were made 10-20 days after pollination, preferably on the ear leaf or the next below or above, depending on which was healthier. The equipment used was a Licor 1600 with which we measured percent relative humidity at equilibrium of the chamber with the leaf blade, leaf stomatal

	IAC N	laya	latente 1	ine x IAC	SLP103f1	1(2)		IA	C Maya la	tente lin	e x IAC 7	23f11(2)	Ú.
0.1		$\frac{F1}{F1}$	R.H.	Res	Tra	Score	_	F1 f1	R.H.	Res	Tra	Score	Krn2 krn2
1	2	3	4	5	6	7	в	9	10	11	12	13	14
1	5	+	53.6	3.54	4.33	+5.7	8	+	47.6	3.50	5.56	+5.0	+14
2	21	+	54.0	3.93	4.84	+5.7	16		50.0	2.97	5.42	+3.6	+16
3	30	+	48.8	3.61	5.77	+5.1	18	+	51.6	2.93	5.35	+3.3	+14
4	31	+	50.4	3.45	5.97	+4.4	17	+	51.6	2.89	5.42	+3.1	+14
5	29	+	52.4	3.25	6.15	+3.6	6	+	51.6	3.47	(6.48)	+3.1	+14
0 7	20	+	52.4	2.91	6.15	+3.1	20	+	54.4	2.66	5.48	+2.0	-12
	12		54.0	2.63	6.35	+2.2	15	+	53.2	2.73	5.90	+1.9	-10
0	13		50.4	2.00	5.72	+2.1	2	+	54.4	2.94	(6.39)	+1.8	-10
10	10		22.0	2.5/	6.61	+1.5	4	+	56.8	[2.35]	(6.92)	+0./	-12
11	20		55.8	2.49	0.04	+1.4	19	*	56.0	(2.32)	5./1	+0.6	. 4.0
12	10		58.8	2.54	0.01	+1.3	12	*	55.0	2.28	6.93	-0.6	+16
13	4		56.8	(2.16)	6.36	+1.0	13	1	(5/.2)	2.19	7.40	-0.0	-12
14	12		58.4	2.50	6.66	+0.0	11	- I	64 8	2.34	7.40	-1.3	-12
15	1	+	58.8	(2 07)	6 29	+0.5	1		64.0	1.09	7.54	-4.5	-12
16	6	+	59.6	2 30	6 66	+0.4	10	-	50 8	2 80	4 60	+3.0	416
17	25	+	58.4	2.32	(6,95)	+0.3	9	-	52 4	2.05	6 14	+7 3	+14
18	15		(59.6)	2.19	6.95	-0.1	16	-	54 8	2.30	5 25	+2 3	-17
19	16	+	60.8	2.06	7.09	-0.7	8	-	52 8	3 01	6 19	+2.2	+14
20	20	+	62.0	1.72	6.87	-1.2	14	-	52 B	2 59	5 55	+2 1	+14
21	28	+	62.4	1.83	7.36	-1.6	18	-	54.8	2.59	5.20	+2.1	+16
22	11	+	63.2	1.78	7.22	-1.7	21	-	57.2	2.50	5.24	+1-4	+16
23	7	+	63.2	1.64	7.16	-2.2	1	-	55.2	2.53	6.20	+0.8	-12
24	23	+	64.4	1.71	7.61	-2.4	15	-	56.0	2.31	5.77	+0.7	-12
25	14	+	67.2	1.69	7.69	-3.0	11	-	54.8	2.36	6.15	+0.6	+14
26	8	+	67.6	1.37	7.58	-3.4	13	-	55.6	[2.31]	5.98	+0.5	+14
27	20	-	54.4	2.95	6.32	+2.6	7	-	(55.6)	2.36	6.61	-0.1	-12
28	5	-	56.8	2.40	6.35	+1.3	23	-	60.4	2.14	(5.61)	-0.4	-12
29	9	-	58.4	2.12	6.44	+0.5	12	-	(57.2)	2.16	(6.23)	-0.4	-12
30	21	-	58.8	2.37	(7.01)	+0.2	3	77	59.2	2.27	7.06	-1.5	-12
31	18	-	60.8	(2,27)	6.94	-0.2	22	-	62.8	1.81	[6.13]	-2.1	-12
32	7	-	(59.6)	1.81	(6.51)	-0.2	20	-	62.8	1.81	(6.14)	-2.1	+14
33	1	-	61.2	1.87	(6.54)	-0.4	24	-	63.6	1.68	(6.22)	-2.6	-12
34	2	-	69.6	1.51	7.65	-0.9	6	-	60.8	2.18	7.69	-2.7	-12
35	14	-	62.8	1.96	7.11	-1.2	25	-	65.6	1.54	6.34	-3.4	-12
30	10	-	63.2	1.93	7.16	-1.3	2	-	64.0	1.90	1.50	-3.0	-12
3/	12	-	63.2	1.60	7.08	-1.0	4	-	05.2	1.01	8.07	-4.8	+14
30	17		60.0	1.53	7.39	-3.5	5		07.2	1.92	0.33	-0.0	-12
39	10		60.4	1.50	7.74	-3.5							
40	10	-	69 2	1.30	7.95 8 10	-4.3							
42	13	-	74.0	1.09	8.42	-5.9							
Mea	n		60.2	2.22	6.80				57.3	2,39	6.29		
5.8			±0.9	±0.11	±0.13				±0.8	±0.08	±0.14		
c . v	. %		9.4	29,2	12.0				8.6	21.3	14.1		
Lsc	mean		55.7	2.73	6.23				53.9	2.73	5.76		
5.8	, mea	n	±0.7	±0.12	±0.14				±0.5	±0.08	±0.12		
c.v	.3	-	5.4	19.51	10.3				4.6	13.0	9.3	-	
150	mean		64.7	1.71	7.37				61.6	1.96	6.94		
5.0	•		±0.8	±0.06	±0.11				±0.9	±0.07	±0.19		
c.v	. %		6.0	16.7	6.9				5.9	15.1	11.4		
78	13		(60.2-R	.H.) (Res	-2.22) (6	.80-Tra)			(57.3-R	.H.) (Res	-2.39) (6	.27-Tra)	
SCO	re		5.6	9 0	,67	0.94			4.8	9 0	. 57	0.89	

Table 1. Data from two families of backcross of floury-1 lines on lines with latente factor originated from Michoacán 21 Comp 1-104. Columns are: 1, classification by the score described at bottom of the table; 2, order of the plant in the field nursery; 3, flinty (+) vs. floury (-) endosperm; 4, relative humidity; 5, stomatal resistance; 6, transpiration; 7, score explained at bottom; 8 = 2; 9 = 3; 10 = 4; 11 = 5; 12 = 6; 13 = 7; 14, kernel row number; *Lsc* is *L*atente stomatal control; Brackets, (), individual measurement not conforming to the score.

resistance (s.cm⁻¹), and transpiration in $\mu g \text{ dm}^{-2} \text{s}^{-1}$. The measurements were made in zig-zag, alternating whenever possible in *Fl1* and *fl1* rows. The results and part of the analysis are shown in Table 1. The three physiological measurements made it possible to build a score for latente contrasting with the mean to give positive values for latente characteristics and dividing each by the standard error. The highest positive values give a greater degree of ascertainment for latente and the highest negative values

more ascertainment for non-latente. In the harvested ears the kernel row numbers were counted. The χ^2 results for 103, 723, the total and the interaction results respectively were, for *Lsc1* and *Fl1*; 4.92*, 1.30, 5.80* and 0.42 with p = 29.6 ± 5.0, p = 40.4 ± 8.0 and mean of p = 35.0 ± 5.3. For *Lsc1* and *Krn2* only the second line gave indication with $\chi^2 = 2.78$ and p = 29.7 ± 7.4. For *Fl1 Krn* the same line gave $\chi^2 = 0.30$ and p = 45.3 ± 8.1. The values presented were calculated by the product moment method since by additivity they give looser results. Transforming the values to map units we have the distances Lsc Krn =34.3, Lsc Fl = 53.1 and Krn Fl = 67.2, which would lead to a Krn Lsc Fl1 sequence. We think a more correct value will be arrived at by applying the "theorem of the differences" as illustrated empirically in MNL 58:38-46 with the standard wx translocations. In the present case the distance Lsc Krn is obtained by Krn Fl1 - Lsc Fl = 67.2 - 53.1 = 14.1. Lsc Fl by Krn Fl - Krn Lsc = 67.2 - 34.3= 32.9. We get Krn 14.1 Lsc 32.9 Fl. Subtracting from 32.9 the distance B Fl (19.0) we get 13.9 as the distance Lsc B, which agrees nicely with the previously reported lte1 B equal to 19.0. So latente-1 must be near position 30, and Lsc in 35. Lsc and lte1 must be very near because of epistatic effects. There is no profit in closing the stomata more at highest heat, if you do not also have higher heat tolerance. The estimation of the relative position of Krn will agree with our previous work only if the directions of the genes were inverted in the first report, unless there is another gene for kernel row number, which is less probable. For B Krn distance, reported as 39, we now have 28. Note that both latente loci are very near mutagenic factors, lte1 Lsc1 near Mut, mutator, and Lte2 near cm1, chloroplast mutator. This must have an evolutionary meaning.

More precise location and study of *lte1 Lsc* probably will be obtained using *lg1 gl2* and also leaf water potential measurements, since latente-1 has 3-4 Bars less negative leaf water potential at all times of day. If or when available, isozymes of the abscisic acid biochemical pattern should be included, as should the substitution of cysteines responsible for the bridges of sulfhydryl-disulfide bonds (SH-SS), to understand its fine structure.

> Luiz Eugenio Coelho de Miranda, Luiz Torres de Miranda and Orivaldo Brunini

Linkages in chromosomes 4, 5, 7 and 8 among kernel row number, fasciation, and T wx in crosses of adapted standard translocations with Português Fasciado

The authors (MNL 58:38-46), using 13 of the adapted standard translocations, T wx and Cateto Palha Roxa, reported positions and distances in centimorgans involving T, wx, Krn (kernel row number), Flt (flint against dent endosperm), and Ger (glucoside earworm resistance, which includes Zer and Mer). Now results are reported from crosses of 7 of the adapted standard translocations with a white dent variety with high kernel row number, Português Fasciado (PF, Fasciated Portuguese), probably HB 19.

S.E. Pego in a Ph.D. thesis (Genetic potential of Portuguese maize germplasm with abnormal ear shape, Iowa State University, 1982), studied PF. He concluded fasciation is not associated with ra1, ra2 and ra3 (ramosa). and a complex system of inheritance was proposed. In our experiment in direct comparisons PF gave 16.0 mean kernel row number, while our local IAC Maya gave a 12.3 mean. The cross with translocations was backcrossed to IAC Maya wx, and in one case we also obtained results from a self. The field plots consisted of one row 10m long planted in hills 0.4m within the row, with rows 1m apart. The hills were planted with three seeds each, alternating hills with normal and waxy endosperm of the same ear within the row. Six reps were used. Every fifth row was planted with IAC Maya waxy as pollinator and the experiment was detasseled. The dry ears were harvested indiscriminately, unhusked. They were classified for presence and absence of exit holes of corn earworm, for fasciated vs. non fasciated, for Wx vs. wx, for normal vs. semi-sterile ears, and kernel row number. In the crosses with the translocation at 5S.07 there was a segregation for

Table 1. Data from (Português Fasciado × translocations) × Maya wx. Abbreviations: U Unholed husks, H Holed husks by
corn earworm; Fas Fasciated ears, fas Non fasciated ears; Wx Normal endosperm, wx Waxy endosperm; N Non-sterile ears, S
Semi-sterile ears; Krn Kernel row number from 18 to 8 kernel row numbers; BC Back crosses; X/Y, X Colored aleurone, Y Non
colored aleurone. A2 Colored aleurone, a2 uncolored aleurone?

				41	.33	BC	41	.90	BC	55.07	BC(A2/a2)	55	.14	BC	7	L.63	1	81	.35 B	C	8L.35	Self
U	Fas	Wx	N		Krn			Krn			Krn			Krn			Krn			Krn			
$\overline{\mathrm{H}}$	fas	wx	ŝ	16	14	12	16	12	10	16	14	12	18	14	10	18	14	12	18	14	12	18	14
_							14		8				16	12	8	16		10	16		10	16	12
+	+	+	+	1	0	0	0	0	0	0	0	0	4	2	0	0	0	0	3	3	0	0	0
+	+	+	-	2	0	0	0	0	0	0	0	0	2	2	0	1	1	1	1	1	1	1	0
+	+	-	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
+	+	-	-	0	0	0	l	5	1	0	0	0	1	6	1	0	0	0	1	0	0	1	1
+	-	+	+	2	6	4	0	5	4	0	0/1	0/3	2	4	0	2	3	6	0	3	3	0	0
+	-	+	-	0	1	8	3	0	2	0	1/1	0	0	7	0	0	4	7	1	4	3	0	2
+	-	4	+	2	0	4	1	2	0	0	0/3	2/0	2	2	0	2	4	4	3	0	2	1	0
+	-	-	-	2	4	4	2	0	0	0	0	0/5	6	13	0	0	4	6	0	3	8	1	0
-	+	+	+	0	2	0	0	0	0	0	0	0	9	3	0	0	1	0	4	1	0	1	0
-	+	+	-	0	0	0	0	0	0	0	0	1/0	2	0	0	0	0	0	2	2	0	3	0
-	+	-	+	1	0	0	0	0	0	0/1	0	0	0	0	0	0	0	0	0	0	0	1	0
-	+	-	-	2	0	0	0	0	0	0	0	0/1	2	1	0	0	l	2	1	1	0	7	1
-	-	+	+	4	5	3	1	3	2	1/0	4/2	5/0	9	6	0	5	5	5	1	5	0	0	1
-	-	+	-	0	3	4	1	1	3	0	1/0	3/4	2	12	1	0	2	8	2	5	3	0	1
-	-	-	+	2	0	1	0	1	0	0	2/0	5/4	0	2	1	0	3	8	0	1	2	4	2
-	-	-	-	2	4	7	0	4	4	0	0/2	5/1	7	21	0	1	14	18	0	3	11	3	3
				20	25	35	9	21	16	1/1	8/9	21/18	48	81	3	11	42	65	19	32	33	23	12
						80			46			30/28			132			118			84		35

Table 2. χ^2 analysis from data of Table 1.

Cross with	N xW	Wx Krn	Wx Fas	Wx U	N Krn	Nx Fa	N U	Krn Fa	Krn U	Fa U
4L.33 BC	7.82**	+0.97	+0.14	+0.46	+0.40	+0.06	+0.05	11.85**	-1.27	-0,28
4L.90 BC	7.90**	0.01	-8.73**	-0.01	-1.51	-4.19	0.87	0.45	1.63	4.74*
55.07 BC	0.11	1.46	-0.22	-0.70	3.24	-0.72	-0.00	0.00	0.34	-0.04
5L.14 BC	33.09**	4.16*	6.05*	-2.44	12.40**	5.77	-1.10	8.89**	-0.94	2.25
7L.63 BC	5.60*	4.30*	0.66	4.51*	8.51**	-2.14	1.08	0.41	0.42	0.07
8L.35 BC	5.62*	15.99**	9.33**	0.19	7.17**	2.47	1.03	23.25**	0.33	0.00
8L.35 Sel:	E 0.48	-0.40	0.24	0.97	-0.03	-2.91	-0.20	4.06*	-1.14	0.01
55.07	A2 Wy = 1	15 82	T = 1 05	82 Kmm -	-0 21 82		42 . 12			

Table 3. p value calculated by the allometric method, with their accompanying allometric effects α and β with the data from Table 1. Extra data from 5S.07 at table bottom. Values within brackets are by the product moment method since by the allometric method the programed calculator did not give a solution.

	Wx T	Wx Krn	Wx Fas	W× U	N Krn	T Fas	тυ	Fas Krn	T Krn	U Fas
4L.33										
	p=34.0	48.6	42.2	46.2	39.1	49.5	48.8	38.7	43.7	43.0
	α=-0.100	-0.089	-0.042	0.002	0.061	0.024	0.054	0.776	-0.003	0.001
	β= 0.066	-0.089	0.790	-0.091	-0.096	-0.791	0.000	0.183	0.091	-0.798
4L.90										
	p=28.4	47.7	-25.0	-49.2	34.1	-26.1	43.8	27.8	41.2	26.0
	α=-0.087	-0.053	-0.007	-0.063	0.126	0.117	0.130	0.627	-0.081	0.624
	B= 0.148	0.509	-0.642	0.095	-0.525	-0.619	-0.098	-0.098	-0.224	-0.097
55.07										
	p=47.6	42.2	-38.8	-43.0	36.0	-44.3	48.9	(49.6)	-49.3	-29.6
	α= 0.051	0.037	-0.028	0.352	-0.116	-0.022	0.346	(1.049)	0.329	0.079
	β= 0.101	0.260	-1.055	-0.056	0.273	-1.062	-0.092	(0.261)	-0.233	-0.880
5L.14										
	p=23.3	40.8	37.8	-43.2	35.9	42.2	-43.9	39.0	-44.4	45.1
	a=-0.058	-0.021	-0.031	-0.006	0.212	0.190	0.228	0.356	0.134	0.110
	β= 0.265	0.206	0.378	-0.133	0.184	0.351	-0.135	0.165	-203	0.362
7L.63										
	p=39.5	38.2	49.5	40.8	32.6	(-32.2)	39.1	48.4	-46.8	-41.2
	α= 0.091	0.041	0.017	0.088	0.055	(0.094)	0.133	0.998	0.161	0.976
	β= 0.132	0.845	1.002	0.171	0.874	(-1.045)	0.213	0.014	-0.037	-0.016
8L.35 B	C									
	p=35.2	(27.8)	27.3	47.6	32.6	44.2	44.6	15.1	47.1	-49.4
	a=-0.123	(-0.090)	-0.139	-0.104	0.216	0.168	0.193	0.474	0.031	0.396
	β≒ 0.208	(0.156	0.439	0.001	0.179	0.366	0.028	0.098	0.157	-0.031
81. 35 S										
	p=-41.2	-41.7	44.7	39.5	-48.0	-32.5	44.4	30.0	-38.0	49.0
	α= 0.029	0.570	0.919	1.141	1.583	0.964	-0.023	0.455	1.011	1.041
	β= 0.109	0.926	0.669	1.091	1.182	0.778	0.103	0.188	0.506	0.691
55.07	A2 Wx	А2 Т	A2 Krn	A2 Fas	A2 U					
	p=42.9	43.4	-47.1	-41.5	-27.4					
	$\alpha = 0.051$	-0.100	-0.020	-0.026	0.383					

-0.022

aleurone colour which turned out to be due probably to A2 and a2 segregation. If anybody noted this in the original translocation material please report in MNL or write to us. Although the initial stand should be up to 450, leading after thinning to 300 plants at harvest, we got analyzable data from families of only 132 to 35 plants. This was due to the very low adaptation of PF. The plants simply died out. This is important to note because we used all treatments up to this number. We did not choose the results presented. At flowering time the overall conditions were unfavorable leading to very bad pollination. This explains the difficulty in separating normal from semi-sterile ears, leading to

-0.021

-0.259

-1.062

β=-0.027

loose direct values of p for the T wx linkage. The results are presented in Table 1. In Table 2 the χ^2 analysis is done. The p values are presented in Table 3. The p values were calculated by the allometric method presented in a prior work, the formula being:

$$\frac{b(1+\alpha-\beta)+c(1-\alpha+\beta)}{a(1+\alpha+\beta)+b(1+\alpha-\beta)+c(1-\alpha+\beta)+d(1-\alpha-\beta)}-p=0$$

The p values were transformed into cM and using our "theorem of the differences" we got the cM values as the mean of the k-2 estimates available, k being the number of factors including T.
We made a modification in relation to the MNL 58:39-46 report in taking the algebraic mean of the differences, and not the mean of their absolute values as in the prior work. The distances, with their standard error, are presented in Table 4. Here we worked out the variances of the estimates.

Table 4. Linkage sequences in cM of T wx Krn Fas in crosses of Português Fasciado with the indicated translocations. p values of Table 3 were calculated by the allometric method. Then it was transformed to cM and the distances arrived at by the theorem of the differences (see MNL 58:38-46), taking by the theorem of the universities (see Mith 56.55-40), taking the algebraic mean of the differences. Variances were got-ten by first transforming V_p to V_{cM} which is $V_{cM} = (cM / p)^2 \times V_p$. A first error estimate is the sum of the four V_{cM} divided by 4 (two contrasts squared). In 5S.07, six V_{cM} divided by nine (three squared). The relative size and sign of the covariances was calculated with the cM values used and subtracted two times if positive or added if negative, to the first error estimate.

										n
4L.33			W×	0.7	Krn4	0.8	I	7.7	Fas4	80
				±7.4	1	:12.4		±13.0		
41.90	Krn4	6.1	Wx	18.7	T	7.0	Fas4			46
		±3.6		±6.8		±4.0				
Ss.07	Ξ	0.8	W×	2.0	<u>a2</u>	6.9	Fas5	2.9	Krn5	58
		±13.2		±7.8		±9.6		±12.4		
5L.14	Pas5	12.4	Wx	12.6	Krn5	22.8	T			132
		±6.6		±5.4		±8.0				
7L.63	T	22.8	Krn7	12.6	Wx	12.4	Fas7			118
		±6.6		±7.3		±6.6				
8L.35(BC+S)	T	8.8	<u>Wx</u>	3.7	Fas8	5.4	Krn8			52
		±4.4		±7.9		±3.4				35

V_p was calculated by the classical method since we saw by the exact allometric method variance formula the 2 added in the numerator is balanced by the value within brackets in the denominator which is very near 2. The covariances are a much more important component of the error estimate. To transform V_p to V_{cM} we make $V_{cM} = (cM/p)^2 \times V_p$. A first variance of the measure obtained by differences is the sum of the four V_{cM} used in the two contrasts, divided by the square of the number of contrasts (two squared). As this doesn't take into account the covariances with the four cM values, we calculated a second new variance and a covariance. Remember $V_{a+b} = V_a + V_b - 2 Cov_{ab}$. With this we know the proportions and signal of covariance, and the variance. With this proportion we correct the first variance calculated. If the covariance is positive it will be diminished, if negative increased.

In estimates of T 8L.35 backcross and selfs the p values were combined by their quantity of information. For 5S.07 the estimate Fas Krn was not utilized in the calculus. It is apparent that, as for kernel row number, factors for fasciation are as, or nearly as, ubiquitous. Really it seems they go around in pairs as tr, two ranked, and pd paired to which they are probably allelic, domesticated and wild ones.

At loose linkages allometric and classic methods gave very similar results. There is an increasing difference as p tends to zero. This is the same as reported for the F2 case.

> Luiz Eugênio Coelho de Miranda and Luiz Torres de Miranda

Allometric genetics: development of methods which permit mapping of non-Mendelian unit segregations (low penetrance)

In MNL 55:18-19 we presented a graphical interpretation of what we called allometric genetics. Here we present a mathematical demonstration. It is based on a derivation by I. L. Gridi-Papp (Dr. Thesis Agronomy School, Piracicaba, SP, Brazil, 1970) which, although correct, was not developed to our present full interpretations.

The velocity of growth of one certain character in a certain moment is a function of the dimension already attained (X), of time (t), and of a factor of proportionality that depends on the character and the genotype:

$$dX/dt = K_X f(X,t)$$

Time (t) is considered as a measure not only from the organ but also from the variations of environment.

Formula (1) expresses a hypothetical relationship because the function f(X,t) remains unknown. Nevertheless, because at time t=0, X=0, its primitive has the form: (2)

$$\mathbf{X} = \mathbf{K}_{\mathbf{X}} \mathbf{F}(\mathbf{X}, \mathbf{t})$$

F (X,t) is also unknown. To get some information about this function it is necessary to consider within the same organ a second dimension, that which presents itself as the character most influenced by the size of the organ. If (Y) is this character it can be formulated:

$$Y = K_y F(Y,t)$$
(3)

(1)

Thus equal values of (t) correspond to a (Y) and an (X).

The relative behaviour of two characters of the same organ such as (Y) and (X) has been the object of investigations of several authors in the past and was described by the so-called allometry law proposed by J.S. Huxley in 1932. This law is based on constant growth velocities, which can be written as $d(\log X)/dt = \alpha d(\log Y)/dt$, where α is a constant. Integrating we get $\log X = \alpha \log Y + \log X$ A. We substitute A for C, the usual constant of integration, because A is really C and is the usual symbol used in allometry.

Log A is constant for a given pair of characters. It follows that:

$$X = AY\alpha \text{ or } X/Y^{\alpha} = A$$
(4)
By (2) and (3) comes

$$X = K_X F(Y,t)$$
 (5

$$Y = K_{y}F(X,t)$$

A comparison between (4) and (5) suggests choosing the constant A such that $A = a(K_X/Ky)$, where a is a factor of proportionality, which means that $X = a(K_X/K_y)Y^{\alpha} = AY^{\alpha}$ and that $F(X,t)/F(Y,t) = AY^{\alpha-1} = X/Y$, with X' = X/Y, then $X' = AY^{\alpha-1}$ and we have shown in our prior work that $X' = (100/Y)^{1-\alpha}$. 1- α is the more nearly biologically correct value of half the difference between the different homozygotes for the same locus. $2(1-\alpha)$ is the logarithm of A, the constant of integration of the "law of allometry".

Using α in the expectations of the appropriate classes in the observed phenotypes a mathematically exact solution can be derived. With only one type of family we must have also an allometric measure of the homozygotes, say BB against bb. With two different types of families a simultaneous solution can be derived for α and p, even if only by iterative methods, though not necessarily.

> Luiz Torres de Miranda and Luiz Eugênio Coelho de Miranda

Linkage between Ga-S and o1

In MNL 59:24 the authors reported data which would put o1 at about position 80 in chromosome four. As its prior position in the working maps was not changed we present more data to improve our earlier estimates. *Ga-S* 01 was crossed to *ga o1* and selfed. The data from three ears together with that from the prior report are in Table 1, including the analysis.

Table 1. Results from the selfed cross, $Ga-S 01 \times ga 01$. First line data from MNL 59:24. Distance Ga-S to o1 turns out to be 52.9 units (cM).

	Fenctypes		5	χ ² deviations from 3:1	Recombination values with standard errors	
		01	02	Total		
fam	1	216	51	267	4.95*	38.2±4.8
fam	2	226	58	284	3.17	40.8±4.8
fam	Э	321	77	398	5.78**	38.7±4.0
fam	4	340	92	432	3.16	42.6±3.9
Sum	of	indiv	idual	chi-squares	18.07	
Tati	81	1103	278	1361	17.46**	40.3±2.2
Interaction among families			families	0.61 0.90>	P>0.80	

The value of p with the total of the four families is 40.3 ± 2.2 , which in cM is 52.9. Among the four families there is insignificant interaction. Based on Ga-S position in the working map this puts ol at about position 85 in chromosome four. The strong linkage depicted around glossy-3 should be depicted around glossy-4 which possibly the original report established, if the linkage were so strong.

Luiz Torres de Miranda and Luiz Eugênio Coelho de Miranda

Allometric genetics III: A universal mathematical solution for the calculation of recombination values

Since the report "Allometric genetics" in MNL 55:18-19 we have been trying to unify allometric and genetic parameters in one body of theory and practical use. In that first report a graphic interpretation of gene effects was made in terms of α , the coefficient of allometry. Also it was shown how it could be used in quantitative genetics. In a preceding report in this volume a mathematical demonstration was done, completing the graphic one. It remains now to show how to use it in Mendelian genetics, and this is the objective of the present report.

For generations biometrists have calculated from a 2x2 table four parameters-a mean, a linear effect for the lines, another for the rows, and the interaction between them. Mendelian geneticists compute only one parameter, p, the recombination value. This seriously limits the range of work to near perfect segregations, 1:1:1:1, 3:1, etc. Segregations giving significant decimal digits are ignored. As a result, this field of work comprises only a small sample of biological variability. The usual method used is the Maximum Likelihood (K. Mather, "The measurement of linkage in heredity"). For more disturbed segregations, the Minimum Moment of the Products Method, also known as the Product Ratio, is used. We have never found a derivation, and for the particular case of the backcross we will show also how it can be done, as one more proof of the mathematical precision of the allometric solution proposed.

Looking at the most upward diagonal in MNL 55:18-19, we can imagine that the effect of a genetic factor A is $+\alpha$, and of a, $-\alpha$. Taking a second pair of allelles, B is $+\beta$, and b is $-\beta$. The combinations of these allometric coefficients are

put in the theoretical frequency expectations, and equated to the observed ones. AA is a, Ab is b, aB is c and bb is d, and n is the family size as usual.

If we make

$$-\frac{\mathbf{a}+\mathbf{n}}{(\frac{1-\mathbf{p}}{2})^{1+\alpha+\beta}}+\frac{\mathbf{b}+\mathbf{n}}{(\mathbf{P})^{1+\alpha-\beta}}+\frac{\mathbf{c}+\mathbf{n}}{(\mathbf{P})^{1-\alpha+\beta}}-\frac{\mathbf{d}+\mathbf{n}}{(\frac{1-\mathbf{p}}{2})^{1-\alpha-\beta}}=0$$

we have the exact numerical solution for the product moment method which is the solution of $(1-p)^2/p^2 = (a \times d) / (b \times c)$, although nobody ever used it but us.

By the maximum likelihood method we take from the 2 x 2 table

$$L = \frac{a}{n} \frac{(1+\alpha+\beta)}{2} \ln \left(\frac{1-p}{2}\right) + \frac{b}{2} \frac{(1+\alpha-\beta)}{2} \ln \left(\frac{p}{2}\right) + \frac{c}{2} \frac{(1-\alpha+\beta)}{2} \ln \left(\frac{p}{2}\right) + \frac{d}{2} \frac{(1-\alpha-\beta)}{2} \ln \left(\frac{1-p}{2}\right)$$

Deriving in relation to p, after algebraic manipulation we arrive at

$$\frac{\delta L}{\delta p} = - \frac{a(1+\alpha+\beta)}{1-p} + \frac{b(1+\alpha-\beta)}{p} + \frac{c(1-\alpha+\beta)}{p} - \frac{a(1-\alpha+\beta)}{1-p}$$

And the value of p is expressed by the equation

b(l+a-8)+c(l-a+B)

 $a(1+\alpha+\beta)+b(1+\alpha-\beta)+c(1-\alpha+\beta)+d(1-\alpha-\beta)$

The second derivative is

$$\frac{\delta^2 L_{a^*}}{\delta p^2} = \frac{n}{2} \frac{\left(\frac{p(1-p)}{a+\delta} (1+a+s) + (1-p) p^{a-\delta} (1+a+\delta) + (1-p) p^{-a+\delta} (1-a+\delta) + p(1-p)^{-a-\delta} (1-a-\delta) \right)}{p(1-p)} = 0$$

And the variance of p is

$$\sum_{n=1}^{2n} \frac{2n(1-p)}{(n(1-p)^{n+\beta}(1+\alpha+\beta)+(1-p)n^{n-\beta}(1+\alpha-\beta)+(1-p)n^{n+\beta}(1-\alpha+\beta)+p(1-p)^{-n+\beta}(1-\alpha-\beta)}$$

The computation of the p value is cumbersome, but it can be arrived at by iterative methods and the logical values used compared with the results obtained by the classical methods.

For any other type of family to get the solution for p it is necessary just to add the appropriate α and β to the solution arrived at by the maximum likelihood expression.

> Luiz Eugênio Coelho de Miranda and Luiz Torres de Miranda

Allometric genetics IV: calculation of recombination values in F2 of *tr* and *pd* with genetic markers from chromosomes 1 to 6

In a preceding report we have shown the exact procedures, expurgated from allometric effects, to calculate p from backcross progenies. Here we will derive the formulas for F2 and illustrate them with data from D.H. Langham (Genetics 25:88-107).

The observed and expected values in a F2 segregation can be described as follows in a 2x2 table:

The symbols are standard, and use β for the allometric effect of *B* gene and α for *A* gene to account for differential penetrance or viability.

The logarithmic likelihood expression turns to

$$L = \frac{a}{n} (1 + a + \beta) \ln (\frac{2 + p}{4}) + \frac{b}{n} (1 + a - \beta) \ln (\frac{1 - p}{4}) + \frac{c}{n} (1 - a + \beta) \ln (\frac{1 - p}{4}) + \frac{d}{n} (1 - a - \beta) \ln (\frac{p}{4})$$

Deriving and making some algebraic manipulations we arrive at:

 $\frac{\delta L}{\delta P} = \frac{a\left(1+a+\delta\right)}{2+P} = \frac{b\left(1+a+\delta\right)}{1-P} = \frac{c\left(1-a+\delta\right)}{1-P} + \frac{d\left(1-a-\delta\right)}{P}$

The value of P is expressed by the equation

 $P^{2}\left[a(1+a+b)+b(1+a-b)+c(1-a+b)+d(1-a-b)\right] +$

 $-P \left(a (1+a+8)-2b (1+a-8)-2c (1-a+8)-d (1-a-8)\right) + \frac{1}{2} \left(1-a-8\right) - \frac{1}{2} \left(1-a$

 $-2rl(1-\alpha-\beta) = 0$

The second derivative is

 $\frac{\delta^2 L}{\delta P^2} = -\frac{n}{4} \left[\frac{(2+p)^{n+\delta}}{2+p} + \frac{(1-p)^{n-\delta}}{1-p} + \frac{(1-p)^{n-\delta}}{1-p} + \frac{(1-p)^{n+\delta}}{1-p} + \frac{\pi (1-n+\delta)}{p} \right]$

(1)

And the variance of P is

$$\begin{split} v_{p} &= \frac{4}{n} \left(\frac{1}{(2+p)^{-1+\alpha+\beta} (1+\alpha+\beta)} + \frac{1}{(1-p)^{-1+\alpha-\beta} (1+\alpha-\beta)} + \frac{1}{(1-p)^{-1-\alpha+\beta} (1-\alpha+\beta)} + \frac{1}{(1-p)^{-1-\alpha+\beta} (1-\alpha+\beta)} + \frac{1}{p^{-1-\alpha-\beta} (1-\alpha-\beta)} \right) \end{split}$$

D.H. Langham studied linkages of pd and tr of Durango teosinte with maize markers. His chief conclusion is that the gene tr is linked to the gene pd, with 20 percent recombination between only one pair of loci. We will try to show that his conclusions are very conservative. In Table 1 we present the results by the allometric method here proposed; with only one more digit than Langham used. He calculated p by the product moment method. In 28 cases we have 23 cases with a value of p below 0.5. The chi-square gives 11.57^{**} , significant beyond any reasonable doubt. This means that for the whole, the markers in general are linked to tr and pd, and so there are tr or pdgenes or both in all or nearly all chromosomes tested. Langham's data do not permit the calculation within each chromosome of pd with tr nor the linkages among the different markers used. This removes much of the efficiency of our method of the differences, but with the available data we applied it making algebraic means of the differences.

Comparing Langham's p values with ours we verify a very close agreement for values of p between 0.4-0.5 (within 1%). Below 0.4 downwards to 0.3 the difference increases to nearly 2%. That is, it seems that the product ratio method is almost fully efficient in eliminating allometric effects at loose linkages in F2. Its efficiency falls as p tends to zero and then our exact method should be used profitably. Regarding fasciation, Langham reported "A mutation to single spikelets in an inbred line of maize was discovered by the writer. When he crossed maize with teosinte the F1 ears had single spikelets instead of the usual paired spikelets. The F2 ears likewise, were homozygous for single spikelets. The inbred line of maize used in this cross has a fasciated type of ear, and its single spikelets would not have been noticed except for the cross with teosinte" [sic]. We regard tr and pd as allelic to our Krn and Fas reported elsewhere.

The error variance was first calculated by the standard F2 formula (the p values by both methods are very near). The variance of cM was first calculated as $V_{cM} = (cM/p)^2 \ x \ V_p$. A covariance was calculated with the cM values used in the calculus. If positive we let it be. If negative it was added two times to the original variance of cM. Thus, it is a maximum error variance.

For #1 we have arrived at direct solitary measures in cM of F1 Pd1 52.0 \pm 7.2 and Bm2 Tr1 48.4 \pm 7.1. With four measures by differences we have Pd1 Tr1 23.8 \pm 12.4, between F1 Bm2. Intrapolating the sum of the three measurements for the F1 Bm distance we arrive at (F1 86) (Pd1 117) (Tr1 132) (Bm2 161).

For #2 by differences, with four measurements we have $Pd Tr 13.2 \pm 6.1 lg1 gl2$ by one pair difference gives 2.0 ± 10.1 . Lg1 Tr gave 59.9 ± 7.0 . B results are unreliable and V4 is too far away although congruent and we

Table 1. Reanalysis of Table 7 and 9 from D.G. Langham in Genetics 25:88-107, 1940. His values were calculated by the product moment method. Ours were by the allometric method described in the text. There are more differences between both methods only in the p values below 0.4. With these p values we calculated the linkage sequences. See text for details. α and β are the allometric effects of A and B genes, lines and rows.

				Pd (Fas)			Tr(Krn)			
Chrom	gene	Linkage phase	q	α	в	q	۵	β	n	
1	Fl	R	39.9	-0.123	-0.106	48.3	-0.128	-0.031	225	
	Bm ²	R	49.9	-0.046	-0.102	38.3	-0.036	-0.029	225	
2	Lgl	R	45.9	-0.043	-0.127	43.1	-0.029	-0.005	257	
	G11	R	48.0	0.024	-0.137	45.1	0.031	0.002	257	
	в	с	64.5	0.289	0.207	46.2	0.251	-0.107	115	
	V4	R	48.4	-0.091	-0.129	48.1	-0.117	-0.008	257	
3	Al	R	43.1	0.062	-0.187	42.5	0.066	-0.070	160	
	Lg2	R	31.2	-0.031	-0.197	42.9	-0.027	-0.058	160	
4	Ts 5	с	41.7	0.089	0.038	36.7	0.502	-0.110	93	
	Su	R	51.8	-0.214	0.173	58.2	-0.237	-0.149	83	
5	Pr	R	49.5	0.032	0.032	42.5	0.066	0.210	101	
6	Y	С	50.4	0.012	-0.123	46.5	0.018	-0.000	257	
	Pl	С	48.6	0.125	0.034	53.8	0.151	0.205	145	
	Py	R	41.2	-0.164	0.107	29.7	-0.256	0.033	300	

arrive at (Pd2-45) (Tr2-32) $(lg1\ 28)$ $(gl2\ 30)$. In the mapping of *Lsc* (latente stomatal control) a *Krn2* was found in position 10. Here *Tr2* lg1 distance is grossly overestimated by direct measurement.

For #3 the single measure lg2 Pd3 is 36.5 ± 8.3 . Tr3 a1 gives 42.6 ± 8.8 . By difference with two pairs we have Pd3 Tr3 10.7 \pm 9.0. Intrapolating the total of the three measures in the known distance lg2 a1 we have (lg2 93) (Pd3 113) (Tr3 118) (a1 141).

For #4 distance Pd4 Tr4 by one single pair difference 10.2 ± 12.4 Tr Ts directly is 45.6 ± 14.4 . Most probable sequence is $(Pd4 \ 3)$ $(Tr4 \ 7)$ $(Ts5 \ 53)$.

For #5 by difference of the only pair available Pd5 Tr5 is 41.0 \pm 20.4, and the order is (Pr 67) (Tr5 125) (Pd5 166) with no indication of orientation.

For #6 we have a single estimate for $Py Tr6 34.1 \pm 6.0$ and a single pair difference for $Tr6 Pd6 20.8 \pm 8.7$ which gives the sequence (Py1 65) (Tr6 99) (Pd6 119) in the map positions.

There seems to be a certain correspondence between

Pd Tr and knob position within each chromosome in all cases.

Luiz Eugênio Coelho de Miranda and Luiz Torres de Miranda

Following the paths from wild to cultivated maize: a cytogenetic mine map

In MNL 58:38-46 the authors detected kernel row number factors Krn in all chromosomes except 4, which was not tested, and 10, which was not significant. In MNL 59:23-24 we gathered evidence of one more in 4S. In MNL 60:33-34 we pointed out that probably in 1 and 4 there was a pair of Krn factors. In the preceding work with Português Fasciado (PF) we found a Krn in 4L, and confirmed a few others already known. The new data also showed that fasciation in the sample tested was detected nearly as frequently as Krn. W.C. Galinat (in D.B. Walden, ed., Maize Breeding and Genetics) in the item on two-ranked versus many-ranked, reports tr in chromosomes 1, 2, 3, 6, 7, 8, 9, and 10. In the item on single versus paired female

Table 1. This table substitutes for Table 3 and 5 from MNL 58:38-46, p values and their standard errors are calculated by the allometric method.

		WxT	TU TKrn TFlt	WxU WxKrn WxFlt	UFlt KrnU KrnFlt	£		WxT	TU TKrn TFlt	WxU WxKrn WxFlt	UFlt KrnU KrnFlt		
2	95.07	37.5	48.0	45.5	47.6			2.46	2.69	2.70	2.61		
- 776	9L.09		41.8	41.6	33.2				3.24	2.96	2.41		
			41.3	44.6	48.5	PWRT	43.5		2.29	3.23	3.40	PWRT	3.32
						PWRWx	17.6					PWRWx	2.58
3	1S.48	25.9	46.1	46.1	46.4	PWRU	49.0	2.94	2.40	2.40	2.59	PWRU	3.05
			36.8	46.4	35.7	PWRKrn	47.6		2.04	3.59	3.51	PWRKrn	0.06
			41.6	41.7	47.4	PWRFlt	47.0		2.63	3.14	0.96	PWRFlt	2.10
	140.5% (MILETICA)	1.770			PARAMAN DATA	PWRT	42.5			10		PWRT	2.54
5	1L.74	8.7	38.7	41.4	47.1	PWRU	44.2	2.69	2.21	0.07	2.33	PWRU	2.36
			34.9	44.6	37.1	PWRKrn	49.2		3.44	2.93	3.39	PWRKrn	2.43
			39.5	39.8	36.3	PWRFlt	44.1		3.13	2.21	2.96	PWRFlt	2.98
	101111 0010-001	24-0323 - 65-0		13.8727 1.5		PWRWx	43.4					PWRWx	2.08
6	25.18	10.8	41.6	40.4	45.6	BU	43.1	1.93	2.87	2.81	2.61	BU	2.10
			34.6	42.6	46.5	BKrn	45.1		2.04	3.01	2.58	BKrn	1.53
			19.2	40.3	39.1	BFlt	49.1		1.54	2.90	2.93	BFlt	3.36
					2010 000	BT	49.1				2004.05420	BT	2.68
7	3L.09	11.6	45.5	45.0	43.8	BWx	47.4	2.45	2.19	3.06	0.85	BWx	3.83
			39.0	42.3	44.0				2.39	2.64	2.19		
			30.4	30.0	38.3				0.06	1.79	3.28		
12	55 07	8 0	44 0	41 8	47 2			2 65	3 41	3 20	2 80		
	35.07	0.0	42.7	28 1	40.2			2.05	1 20	2 21	3 04		
			43.7	42 5	45.2				2 50	2.21	3 36		
			44.0	42.5	40.0				2.33	2.00	5.50		
13	5L.14	15.9	48.9	42.7	46.0			2.40	1.56	2.95	3.29		
			33.0	30.9	49.6				2.08	2.91	3.00		
			49.1	46.2	44.8				2.97	3.13	2.74		
11	51. 69	17.4	33.0	42.1	46.1			2.21	2.10	3.22	2.18		
	52.05		44.0	46.2	31.9				2.90	2.47	3.57		
			41.7	42.8	46.1	PloT	25.4		2.69	2.76	2.32 [PlpT	2.93
						PlpWx	31.9					PlpWx	3.20
14	65 79	14 5	40 0	41 1	49 7	Dinii	44 2	3 09	2 09	2 53	3 87	Ploft	2 44
	03.75	14.3	40.9	40 8	48 7	Plokro	48 2	3.09	2 59	3 09	0.02	Plokro	2 40
			32 7	33 7	47 8	PipFit	47.3		1.35	2.73	1.20	PloFit	2.97
			32.11	55.7	11.0	PloT	25.4		1.33		1.20	PINT	2.93
15	61.10	20.7	24.4	32.3	47.0	PInU	21.2	3.07	1.14	3.16	3.17	PIDU	2.49
	01110		30.9	22.8	45 6	Plokro	50.0	5.07	3.01	3.09	2 77	Plokra	3.20
			28.1	26.4	32.1	PinFit	20.0		2.04	2.71	2.34	PloFlt	10.00
			2012	20.4	22.1	Din Wy	31 9					PINWY	3.19
16	71. 63	14.3	39.8	49.0	41.5	BnII	47.8	1.93	1.81	2.35	2.89	BnU	1.45
			41.2	42.0	32.7	BnKrn	46.3		2.85	0.01	0.05	Bakra	3.39
			32.5	36.7	44.4	BnFlt	45.9		2.30	2.48	1.33	BnFlt	2.35
			52.5	30.7		BnT	36.9		2120			BnT	1.82
18	8109	12.6	45.4	46.3	45.7	BnWx	44.1	1.55	2.57	1.83	2.96	BnWx	2.22
	00.07	12.0	21.5	24.5	46.3	21111			2.63	1,90	1.83		
			30.3	34.4	40.0				2.54	1.15	1.01		
20	105.40	10.8	44.2	49.0	45.6			2.89	2.31	3.10	2.56		
			46.8	45.5	43.5				1.98	2.49	2.72		
			31.0	42.3	46.9				3.01	2.62	2.53		
16	y Wx 10	.4 ут	7.5	y Krn 8	.4 y F	lp 4.6	У	Wx 2.71	Y '	г 3.50	yKrn 3	.13 y Pl	p 3.30

Table 2. This table substitutes for the lower part of Table 6 in MNL 58:38-46. The difference is that the p values and their standard errors were calculated by the allometric genetics methods described in this issue. Comparisons with other data are indicated in the last column (PF, with Português Fasciado, DT with Durango teosinte). Symbols within parenthesis indicates the reference points onto which the other measurements were combined.

Mar	ker		Cross checks with
2	95.7; 9L.9	T Wx Fltg Krn9 Ger4 2:0.6 4:1.4 13:1.4 13:2.4	
35	15.48 11.74	T Wx (PWR) Flt1 Krn1 Zer4 Wx T -5:3,1-1 ±1.0 26 ±1.6 31 ±1.9 35 ±1.5 40 ±2.0 52 ±2.7 60	≠ DT
<u>6</u>	25.18	T Wx Flt2 Krn2 Zer3 (B) 3 ±7.4 11 ±0.8 22±1.8 23 ±5.7 28 ±3.9 49	=MNL 60(Lec) = DT
Z	31.09	T Wx F1t3 Krn3 (Tr3) Mer2 100±0.6 101 ±1.4105 ±1.4 118 ±2.4 131	= DT
<u>12</u>	55.07	Wx T Flt5 Krn5(Tr5) Ger1 87 ±2.3 96 ±3.0 120 ±2.0 125±0.9 128	≠ PF = DT
<u>13</u>	5L.14 Wx <u>80</u>	T Flt5 (Krn5) Ger1 ±1.8 101 ±4.4 120 ±2.0 125±0.9 128	≠ PF = DT
<u>11</u>	5L.69	Flt5 (Krn5) Wx Ger1 T 120±2.0 125 127±0.9128 ±9.2 138	≠ PF = DT
14	65.79	T Wx Krn6 Plt6 Zer2 (Plp) 8±0.7 9 ±1.3 35 ±0.5 36 ±3.9 40 ±0.5 45	= DT
<u>15</u>	61,10	Wx T y Xrn6 Plt6 (Plp) 11 ±1.4 19 ±1.6 27 ±1.7 35 ±0.5 36 ±5.1 45	= DT
<u>16</u>	71.63	T Wx Flt7 Krn7 (Bn) Ger2 52 ±1.6 56 ±4.7 61 ±1.7 64 ±2.1 71 ±2.5 73	= PF
18	81.09	T Wx Krn8 Flt8 Ger3 1 ±0.6 7 ±0.3 8 ±0.7 27 ±1.7 Ger3	= PF
<u>20</u>	105.40	T Hx Flt10 Krn10 Ger5 15 ±1.5 7 ± 1.6 14 ±3.8 3 ±3.9	

spikelets he reports pd in 3, 4, 7, 8 and 10. With the data from PF and Durango teosinte it dawned on us that we had unconsciously done with cultivated maize what had been done with wild maize, that is, teosinte. So Krn is probably allelic to tr and its symbol should turn to Tr. Fas, fasciated, is conceivably allelic to pd and would turn to Pd. With these data we arrive at 12 pairs of alleles for kernel row control in the species, linked to Fas in 4, 5 and 8 and to pd in 3, 6, 8 and 10 in total 3, 4, 5, 6, 8 and 10. See prior report with reanalysis of Langham's Durango teosinte data. Botanists have considered these types of data as incongruous. If we accept that wild maize was domesticated independently in three or four places, or if, not fully domesticated, it was transported into the presence of other races of teosinte before the isolating knobs were fully formed the story becomes congruous. Teosinte didn't transfer the knobs to maize, both developed the knobs as an isolation mechanism within each to eliminate cross pollinated individuals.

Looking at a map of the knobs in the species one is struck by two very marked characteristics. The knobs are wide apart or they are in three clusters of two to four knobs, in #6 three, L1, L2, L3, in #8 L1, L2, and in abnormal #10, four unidentified knobs.

It is as if the knobs inhibit the formation of adjacent knobs in one isolated race, and so for instance in #6, L1, L2 and L3 would be from three different domestications. B. McClintock (in D.B. Walden, ed.) calls attention to the distribution of a small knob at position three, L3 in #6, which with one in 7L she defines as the "Andean Complex". That takes care of three of the six lineages proposed by P.C. Mangelsdorf in Corn, Its Origin, Evolution and Improvement. These lineages are Chullpi, Kculli, and Confite Morocho. So, for L3 in #6 the question is settled. There remain the lineages Palomero Toluquenõ, Chapalote-Nal Tel, and Pira Naranja and the other knobs.

The development of the allometric method to calculate p values, shown in prior reports in this issue, led us to recalculate the data presented in MNL 58:38-46. The new results are presented in Tables 1 and 2.

Discussing the results from Table 2, we will make reference to the prior work on Durango teosinte (DT) and Português Fasciado (PF). The linkages detected for Krn1in #1 seem for a locus different from those detected in DT which then should be named Tr11 and Pd11. For #2 there is agreement with DT, and with the work mapping Lscwhich gave (Krn2 10) (lte1 30) (Lsc 35) (B 49). For #3 there is agreement with Tr3 from DT. For #5 we verify that for 5S.07 the sequence is Wx T and there are different loci which then would be Krn15 and Fas15, it agrees roughly with DT. For #7 there is agreement with PF. For #8, best fit would be the order Wx T for 8L.35 in PF and not as is shown in the Table.

Turning again to PF data 4L.33 could check with Ga-S Krn4 in MNL 59:23-24, and 4L.90 involves new loci, presumed Krn14 and Fas14, but with very small families. For #9 there is a reference to tr in the literature. As there is a reference for tr pd in the literature we include our sequence Flt10 Krn10 Ger5 which was not presented in the first old report.

It goes without saying that much of this summing up is quite tentative but we think it will encourage more precise work with much more powerful tools for this kind of factors.

> Luiz Torres de Miranda and Luiz Eugênio Coelho de Miranda

CAMPINAS, SÃO PAULO, BRAZIL Universidade Estadual de Campinas

The prolamin polypeptides of maize and related grasses

Seven tropical maize inbred lines, four teosinte varieties (Zea luxurians, Zea mays mexicana, Zea mays parviglumis and Zea diploperennis), Tripsacum dactyloides and Coix lacryma-jobi had their alcohol soluble proteins analysed by SDS-PAGE and isoelectric focusing (IEF) on agarose gels. On SDS-PAGE the prolamins of the maize inbred lines, teosinte varieties and Tripsacum were separated into the well-known four major size classes with apparent molecular weight of 22, 19, 15 and 10 kD. The prolamin of Coix presented a band with apparent molecular weight of 22 kD, along with a band of higher molecular weight, and an intermediary band between the 15 and 10 kD classes.

The IEF analysis showed distinct prolamin profiles ("fingerprints") for all samples analysed. In the seven maize inbred lines a total of 25 different polypeptides were identified. The polypeptides were numbered according to their distance to the cathode end of the gels (Wilson, Cereal Chem. 61:198-200, 1984). The most basic polypeptide found among the maize inbred lines was 10, and the most acidic was 47.5. Polypeptides 25.5, 31 and 35 were present in all the inbred lines.

A great heterogeneity was observed among the IEF pattern of *Coix*, *Tripsacum* and the teosinte varieties. The most basic band identified was 7.5. That band was present in *Tripsacum* and *Zea diploperennis*. The most acidic band was found in *Zea mays parviglumis* and was designated 58. Both bands, 7.5 and 58, were not present in the maize inbred lines analysed. Polypeptides 31 and 35, which were identified in all the seven maize inbred lines, were also found in *Tripsacum* and teosinte. Those polypeptides could be the product of genes that were conserved during evolution. This, however, should be confirmed by molecular analyses of those genes.

Laura M.M. Ottoboni and Paulo Arruda

CANBERRA, AUSTRALIA CSIRO, Division of Plant Industry

Fertilization by low numbers of pollen grains

Zea mays is recognised as a prolific pollen producer. It has been estimated that about 25,000 pollen grains are produced by one plant for each kernel on an ordinary ear with 1000 kernels. Allowing for dispersal, it is possible that at least 170 grains are available per silk during the course of pollen shedding (T.A. Kiesselbach, The Structure and Reproduction of Corn, Univ. Nebraska Press, 1980). The availability of large numbers of pollen grains competing for a limited number of ovules provides a selective advantage for the more vigorous pollen grains (Mulcahy, Science 206:20-23, 1979). Goss (Bot. Rev. 34:333-358) recognised it is difficult to estimate pollen viability by the application of single grains to silks.

During an investigation into the possibility of transferring DNA to individual pollen grains, it was necessary to estimate the minimum number of pollen grains required on a silk to effect fertilization. Detasseled maize plants (lines 256 and γ 25) were kept in a glasshouse separate from the same lines of plants which produced the pollen. The tassels of the pollen plants were shaken each morning to remove old pollen. Two hours later (ca. 11 a.m.) the freshly shed pollen was collected. Detasseled plants were transferred to the laboratory. Individual pollen grains were picked up on a pointed scalpel blade and transferred to silks exposed under a dissecting microscope. Detasseled plants exposed to similar conditions in the laboratory without application of pollen grains produced no seed. Repeated application of pollen grains to parts of the

Repeated application of pollen grains to parts of the silk other than the hairs did not produce any fertilization. When individual pollen grains were applied to the hairs of silks, varying levels of fertilization occurred depending on the number of grains present (Table 1).

Table 1. Application of individual pollen grains to the hairs of silks of maize plants.

	No. grains	No. hairs	No. silks	% seed
	/hair	/silk	treated	set
hair				
silk.	1	1	127	8
• •	- 1	2	65	25
4 4 4	_ 1	3	43	72
q q q q	1	5	33	34
q q q q q	þ.,		22	27
		1	22	11
۳ <u>۰</u>	- 2	1	61	14
**	2	2	38	34

a.	- 2	4	6	83
e	_ 3	1	43	24
	- 3	2	34	72

The application of one to three pollen grains on an individual hair of a single silk produced a low level of fertilization (8-24%). The addition of one, two or three grains to two or more hairs on a single silk produced increasing seed set (25-83%). These preliminary results suggest satisfactory levels of fertilization can be achieved with relatively low numbers of pollen grains applied to the bases of silks. It is not known if a minimum number of grains is required on each silk for efficient fertilization due to reduced pollen viability or if this number is necessary to stimulate synergistic pollen tube growth.

J.C. Waldron

Pollen transformation

A transformation system utilizing the normal fertilization cycle of maize is desirable since the protoplast system has limitations in not regenerating whole plants. Pollen seems to be a suitable vehicle with which to transfer foreign DNA into maize plants. Hess et al. (Z. Pflanzenphysiol. 74:52-63, 1974) consider pollen of *Petunia* and *Nicotiana* can take up foreign DNA during the germination phase and transfer it to the egg during fertilization. Maize pollen can be germinated in vitro and transferred to silks to effect fertilization (Raman et al., J. Hered. 71:311-314, 1980). Recently, Ohta (P.N.A.S. 83:715-719, 1986) obtained genetic evidence for the successful transformation of maize using pollen to transfer exogenous DNA to the embryo and endosperm.

The method used to attempt to transfer cloned DNA into maize plants was to germinate maize pollen from

alcohol dehydrogenase null plants in the presence of a plasmid containing Adh genes, then transfer pollen to the silks of detasseled, Adh null plants. A modification of the Brewbaker and Kwack medium (Amer. J. Bot. 50:859-865, 1963) was used to germinate maize pollen and maintain pollen tubes intact for at least two hours. The medium consisted of 15% sucrose, 0.03% Ca(NO₃)₂, 0.01% H₃BO₃; 0.02% MgSO₄; 0.01% KNO₃; 0.01% Tris; 0.7% Agarose, pH 6.5. Small pieces of dialysis tubing were placed on the surface of the solid medium some time before the pollen was applied. The dialysis tubing prevented germinated pollen grains from adhering to the agar medium and allowed easy transfer to the silks with a camel hair brush. DNA, as a supercoiled plasmid, contained either the Adh1-1F or Adh1-1S allele, each in combination with nopaline synthase as another marker gene. DNA was applied to the surface of the dialysis tubing at concentrations between 50-200 μ g/ml. The effect of linearizing the plasmid DNA was also tested. Fresh pollen from Adh null plants (#256 = Adh1-0, Adh2-0; $\gamma 25 = Adh1-0$, Adh2+) was sprinkled on the surface of the DNA solution over the dialysis tubing. After a minimum of 15 minutes germination the pollen was transferred to the silks of detasseled, Adh null plants in a "pollen free" glasshouse. The resulting seed was grown to maturity and tested enzymically for ADH activity in small scutellar slices.

The time of pollen germination on artificial medium before transfer to silks affected the resulting seed set:

Time of germination	Average no. seeds/ear
15 minutes	13.0
30	7.0
60	0.3
90	0.5
120	0.1

Shorter germination times produced more seed but the pollen was in contact with DNA for a shorter time. The possibility of seed being produced by non-germinated pollen grains cannot be excluded. However, counts suggested that generally if pollen grains did not germinate within 30 minutes on artificial medium they failed to germinate.

Another method used to determine if fertilization was effected by germinated pollen was to fix silks (3 volumes ethanol: 1 volume acetic acid) with the attached pollen and stain with aniline blue. Aniline blue stains specifically for callose in the pollen tubes and allows the course of the tubes to be followed down the silks to the ovules. Using this method, pre-germinated pollen grains could be seen to be attached to the silks and penetrate down to the ovule.

The site at which DNA is "taken up" by germinating pollen is uncertain. Hess et al. (Z. Pflanzenphysiol. 74:371-376, 1974) believe the tips of *Petunia* pollen tubes are thin and permeable and permit the uptake of large molecules. Experiments were conducted to try to detect the site of uptake of DNA in germinated maize pollen. Staining with the DNA specific fluorochromes, DAPI and mithramycin (Coleman et al., J. Histochem. Cytochem. 29:959-968, 1981), failed to detect any differences in DNA levels in treated and untreated pollen. However, the stains were useful in following the path of migration of pollen nuclei in the tubes of fixed material during germination. Pollen grains were also germinated in the presence of ³⁵S labelled DNA, fixed and autoradiographed. A very small percentage of pollen tubes showed the presence of silver grains which represent DNA molecules, down the length of the pollen tube. Whether the silver grains were located inside or outside the pollen tubes was not known.

Approximately 1500 seeds were tested for ADH activity after DNA treatment of Adh null pollen. Two seeds from Adh1-1S treated pollen showed possible Adh1-1S activity in one Adh null line, and another from Adh1-1F treated pollen showed Adh1-1F activity in a different Adhnull line. After germination the three seedlings showed weak growth and did not survive. A number of seedlings produced from germinated pollen grains showed weak growth, and embryo rescue from fertilized ovules was carried out to overcome the problem. Several hundred small plants were regenerated in tissue culture and the roots tested for ADH activity. None of the plants showed ADH activity.

Although Adh genes may have been transferred into three maize plants via pollen, this method, which utilizes the "passive" uptake of DNA by germinating pollen, does not appear to be practical to obtain a reproducible, high frequency of transformation. Sanford et al. (Theor. Appl. Genet. 69:571-574, 1985) were also unable to obtain satisfactory frequencies of pollen mediated transformation in maize and tomato. Recent work by Matoušek and Tupý (J. Plant Physiol. 119:169-178, 1985) showed that pollen from a number of plants, including maize, released nucleases when germinated on artificial media. The combined effects of nucleases degrading the Adh containing DNA and the low seed set produced by pre-germinated pollen are some of the likely causes of the low frequency of pollen mediated transformation in maize.

An approach aimed at mechanically delivering DNA efficiently into cells is now being attempted to obtain transformation in maize.

J.C. Waldron

Stability of alleles of *Rp* (resistance to *Puccinia sorghi*)

There are 5-6 loci in maize known to confer resistance to rust disease caused by *P. sorghi*. The Rp locus maps at the tip of the short arm of chromosome 10 and has 14 alleles, Rp-a—Rp-m. Each allele can be recognised by the appropriate race of the pathogen and by reaction type, e.g.:

	Race 1	Race 2
Rp-d	- (;)*	+(4)
Rp-g	- (0)	- (o)
Rp-m	+(4)	- (1)

*The symbol in brackets describes the reaction using the terminology developed for wheat where ; (fleck) or O (immune) are the resistant reactions and 4 is fully susceptible.

Our original experiments were designed to tag the Rp gene with a known controlling element in order to provide a mutant accessible to molecular analysis. The Rp-g allele was the first target selected because the immune or (o) type reaction is the most clear cut resistance phenotype. In initial experiments with transmission through either pollen or egg the Rp-g allele gave rise to Rp-g' variants that were fully susceptible and occurred at about 7/1000 seedlings screened. Recovered Rp-g' alleles were stable and did not revert back to the resistant phenotype in any of 11,716 seedlings tested. Seven independently occurring Rp-g' alleles combined in all 21 possible heterozygous

combinations showed no complementation. The frequency was unaltered by the presence of any known controlling element system and presumably reflects some inherent instability of or event at the Rp-g allele. The frequency was clearly several orders higher than would be expected for an insertion event and ruled out the use of this Rp-gallele as a target for gene tagging. A subsequent examination of other alleles indicated that this was not an isolated event.

Allele	No. seedlings	No. susceptibles	Frequency 0.0068	
Rp-g	55,044	372		
c-k	1,214	10	0.0082	
a	344	1	0.0029	
b	2,913	3	0.001	
С	2,807	2	0.0007	
td	1,985	3	0.0015	
f	1,853	9	0.0049	
d	25,006	5	0.00016	
m	11,206	0	0.0	

The stabilities of Rp alleles fall into four frequency classes. The Rp-m allele shows the highest stability with no clear case of an Rp-m' susceptible variant being recovered from 11,206 seedlings scored. However, the resistance reaction is a type (1) or even (2) and this is difficult to score under some conditions.

The Rp-d allele, the next stable allele, was used as a target for tagging with the Ac-Ds system. If the background stability of Rp-d is about 1-2/10,000 and the expectation for controlling element insertion is assumed to be in the range 10^{-4} to 10^{-5} then in a population of 2-300,000 seedlings one would expect to recover 40-60 Rp-d' variants due to the background instability of the Rp-d allele and 1 or 2 susceptible seedlings due to insertional inactivation by Ac-Ds. These insertional events can only be distinguished if they are unstable and revert either to resistance or some other recognizable phenotype. Cross: Rp-d/Rp-d, $Ac/- \times Rp$ -m/Rp-m

	No. seedlings			
	Rp-d/Rp-m	Rp-d'/Rp-m		
Exp. 1 (Ac at P-vv)	121,078	31		
Exp.2(Acatwx-m9)	50,405	11		

Characterization of the Rp-d' variants:

Class I -fully susceptible type (4)	32
Class II -intermediate type (1-2)	2
Class III-High necrosis type (; NN)	7
Total	41

Forty of the 41 variants were recovered and are being tested for stability in the presence and absence of Ac. Classes II and III were not observed in the control (no Ac) population of 25,006 seedlings. One of the Class II variants, Rp-d'-5, is an unstable phenotype giving rise to fully susceptible type 4 seedlings at a frequency of 0.4% (13/2725). This frequency of instability is in the range expected for a Ds excision event but further work is required to demonstrate that it is Ac dependent.

Analysis of the Class III high necrosis mutants is only preliminary. However, they appear to be very similar to barley ml-0 mutants and to the lesion mutants described by Neuffer. Rp-d'-21, a class III variant, reacts to all races

38

of the pathogen tested and this high necrotic reaction is induced spontaneously under low temperature conditions. Two of Neuffer's Les mutants (Les*-1451,Les*-1453) are located on the short arm of chromosome 10 and may be allelic to Rp. Class I and III variants could be explained if the Rp gene contained at least two parts, one conferring specificity (S) and the other triggering the hypersensitive response (HR). Mutations in HR would be incapable of response and phenotypically susceptible, while mutants in the S part would recognise all races of pathogen (as for ml-o and Rp-d'-21) and under environmental extremes may lack control and spontaneously give rise to necrotic lesions. Such a model would explain the existence of the estimated 60-70 lesion loci in maize since they would represent the evolutionary library of resistance genes that function by initiation of the hypersensitive response.

Tony Pryor

CHESTNUT HILL, MASSACHUSETTS Boston College

The effect of proline on the regeneration of maize callus lines

The problem of the regeneration of plants from maize anther-culture-derived callus lines either by organogenesis or by somatic embryogenesis has been perplexing. In the last few years a number of maize callus lines had been selected and maintained by subculturing. During this period it was observed that most of them lost their capacity of proliferation after one or two years. However, several promising lines did show persistent vigor and prolificity.

In the last year, two of these continually grown callus lines, 81-85 and SAN1, were subjected to a regeneration test with the application of l-proline. These lines were chosen because they always provided abundant materials. According to the recommendations of Green et al. (Advances in Gene Technology: Molecular Genetics of Plants and Animals, 1983) and Rapela (J. Plant Physiol., 1985) varying amounts of the amino acid were employed. After repeated experiments, it was consistently revealed that no apparent difference occurred between the calluses grown on proline medium and those grown on control medium without proline. Hence, it appears tenable to say that the positive response of the maize calluses reported by Green et al. and Rapela to the proline regeneration medium is of genetic control. Our callus lines have a different genetic background from that of theirs.

Y.C. Ting and Stephen Schneider

Continued study on the meiotic chromosome behavior and fertility of anther-culture-derived plants

In 1978, Ting et al. (Acta Genetica Sinica) reported that H2 plants (2nd generation of pollen plants) from the intercrossing of sister dihaploid pollen plants consistently showed chromosome stickiness during the first meiotic divisions of the microsporocytes in the maize strain Lai-Bin-Bai. On the other hand, in the H2 plants from the selfing of pollen plants of maize strain Gui-Dan-12, meiotic chromosome behavior in the microsporocytes appeared normal in the first division. In 1985, Ting (Maydica) again studied chromosome behavior in pollen plants of the maize strain Dan-San-91. In the first meiotic divisions of the microsporocytes of haploids, aneuploids and dihaploids of the H1 generation, chromosome fusions (stickiness) were always present. In view of the above inconsistent observations it was deemed necessary to make a further study on the meiotic chromosome behavior of maize pollen plants and their progenies.

In the summer of 1986, microsporocytes of three plants each of the H1 and H2 progenies of pollen plants of maize Dan-San-91 were collected and fixed according to the standard aceto-carmine squash technique. Upon microscopic examination it was found that, at the first meiotic prophase, chromosome fusions persisted from early leptotene-zygotene stage to metaphase I. Laggards at anaphase I and II were also observed, but the percent of cells having this kind of irregularity was very small. Both of the above appeared in all the plants studied. Nevertheless, the other aspects of meiotic chromosome behavior appeared normal. Regarding fertility, all of the plants had practically full seedsets.

Y.C. Ting and Stephen Schneider

COLLEGE STATION, TEXAS Texas A&M University

Partitioning the sources of abscisic acid found in developing embryos

Last year we reported that there were two separate sites of synthesis for abscisic acid (ABA) found in maize kernels, i.e., "in situ ABA" is synthesized within the kernel while "maternal ABA" is synthesized in the maternal plant and transported into the developing kernel. It now appears that there may be three sources, since "maternal ABA" may have two components. Cob tissue cultured in vitro synthesizes ABA which appears to be transported into ABA-deficient embryos. Thus, "maternal ABA" (synthesized in distal regions of the plant), "cob ABA" (synthesized in the cob tissue) and "in situ ABA" components contribute to the total ABA found in the kernel.

Coupling genetic and chemical inhibitors of ABA synthesis with cultural manipulation of seed development has enabled us to partition ABA into various combinations of component sources. We believe the carotenoid-deficient mutants vp5, vp7(=ps), w3 and the persistent herbicide fluridone completely inhibit ABA synthesis in the kernel if applied prior to 10 days after pollination (DAP). Due to the rapid metabolism of ABA, "maternal ABA" that may have been present in kernel blocks harvested at 5 DAP and cultured in vitro for 10 days should be completely degraded, or nearly so. These assumptions provide the logical basis for our partitioning methodology shown in Table 1.

Table 1.	Sources	of ABA	found	in	maize	kernels.

	Source of ABA					
Plant Material	In vivo	In vitro				
Wild Type	Maternal Cob in situ	Cob in situ				
ABA-deficient Mutants	Maternal Cob	Cob				
Fluridone-treated	Maternal Cob	Residual				

Preliminary data for this partitioning model are shown in Table 2. The field grown vs. cultured values are not directly comparable. The kernel blocks were cultured at a

Table 2. Abscisic acid concentration [pMo] ABA embryo⁻¹ \pm SE in 15 DAP embryos from field grown and in vitro cultured wild type^a (WT), fluridone treated^b (WT-F) and homozygous carotenoid-deficient^c (MUT) kernels of maize.

Field Grown	In Vitro Cultured
0.1422±0.0571	0.5236±0.1335
0.0864±0.0312	0.0854±0.0256
0.0738±0.0201	0.0057±0.0008
	0.1422±0.0571 0.0864±0.0312 0.0738±0.0201

^aWild type means and standard errors were calculated from 15 pooled sample means (4 assays/sample) of Tx5855, <u>w3</u> •Tx5855, <u>vp5</u>*•Tx5855 and <u>vp7</u>*•Tx5855 field grown and 8 pooled sample means of Tx5855 and <u>w3</u>*•Tx5855 cultured kernels.

^bTx5855 kernels were sprayed with fluridone (100 mg]⁻¹) at 9 DAP in the field or cultured with fluridone (100 mg]⁻¹) added to the medium. Five field grown and 3 cultured samples were assayed.

^CEight w3·Tx5855, vp5·Tx5855 and vp7·Tx5855 samples were pooled for field data. Cultured data were from 6 w3·Tx5855 samples.

constant 30C which seemed to accelerate development, and their 15 DAP ABA levels are comparable to 18 DAP ABA in field grown embryos. However, comparisons within culture systems suggest that over 50% of the ABA in 15 DAP field grown embryos was of maternal origin. They also show that the cob contribution is appreciably less than that of the maternal plant.

> J.D. Smith, B.G. Cobb, C.W. Magill, D.J. Hole and C.A. Blakey

Identification of slow rusting resistance to *Puccinia* polysora Underw. in inbreds and single crosses

Ephiphytotics of southern rust occurred in the southern USA in 1972, 1973, and 1974 raising concern over the relative susceptibility of the maize germplasm in the United States to Puccinia polysora Underw. Slow rusting is a common form of resistance to many rust diseases, but slow rusting has not been evaluated in the maize/P. polysora interaction. For this reason, tests were designed to evaluate the slow rusting character of 23 single crosses and 33 inbreds in 1983 and 1984. The area under the disease progress curve (AUDPC) was calculated for each entry using weekly assessments of pustule density. Individual weekly assessments of pustule density were also analyzed to compare the relative effectiveness of the two methods for identification of slow rusting. Significant differences were observed among both inbreds and single crosses for AUDPC and for pustule density. The maize inbreds and single crosses evaluated displayed considerable variation for the slow rusting trait. Rank correlations between years were higher for AUDPC than pustule density, although rank correlations over years between pustule density and AUDPC were all high. The indication is that weekly assessments, if correctly timed, are as effective for identifying slow rusting as AUDPC, although they do not provide the details that can be gained by the multiple assessments used in calculating AUDPC.

> B.A. Bailey, W. Schuh, R.A. Fredericksen, A.J. Bockholt and J.D. Smith

Identification of linkage groups controlling slow rusting in the *Puccinia polysora*/maize interaction using reciprocal translocations

A partial series of waxy reciprocal translocations involving chromosome 9 and one of each of the remaining chromosomes was used to identify linkage groups controlling slow rusting in the Puccinia polysora/maize interaction. The translocations were in a variable background and two lines of descent (LOD), one more resistant than the other, were evaluated for each inbred/translocation combination. The resistant LOD were analyzed separately from the more susceptible LOD. The inbreds B37R (resistant), Mo17 (slow rusting), B73 (moderately rusting), and Tx5855 (fast rusting) were evaluated in separate field tests in 1986 using a modification of Anderson's procedures (C.R. Burnham, Discussions in Cytogenetics, pp. 110-111). Area under the disease progress curve was calculated from 4 individual observations of pustule density on 10 plants per plot in a 5 block randomized complete block design test for each of the 2 LOD groups. Factors were translocation and endosperm character.

The complete resistance of B37R, which carries the *Rpp9* gene, was linked to chromosome 10 in both LOD tests. It was previously known that the Rpp9 gene was linked to chromosome 10 (A.J. Ullstrup, Phytopathology 55:425-428), and B37R served as a positive check. The slow rusting character of B73 was almost entirely explained by linkage to chromosome 4 although chromosome 8 was also indicated important in the susceptible LOD test. The resistance of Mo17 was linked to chromosome 4 and 7 in the susceptible LOD test but not in the resistant LOD test. It was apparent that identification of linkage groups was impaired due to high background levels of resistance in the resistant LOD test. Chromosome 9 was indicated to be important in all the susceptible LOD tests except Mo17. The overall rate of epidemic progression varied between tests and seemed to affect the expression of resistance linked to chromosome 9. Hybrid vigor may also play a role in the resistance linked to chromosome 9 since in each case the normal kernel plots were held heterozygous for large sections of 2 chromosomes while the waxy kernels were forced toward homozygosity. In several cases resistance was linked to the translocation in the resistant LOD test, the most consistent of which were wx T5-9 and wx T6-9.

It is notable that resistance to *Puccinia sorghi* (W.A. Russell and A.L. Hooker, Crop Science 2:477-480), and *Helminthosporium turcicum* (M.T. Jenkins et al., Crop Science 1:450-455) have been linked to chromosome 4. Chromosome 10 also carries a complex group of complete resistance genes to *P. sorghi*. The consistent association of resistance genes and linkage groups suggests similar gene groups may be controlling both *P. polysora* and *P. sorghi*.

B.A. Bailey, J.D. Smith and R.F. Fredericksen

Morphological stages of embryo development in Tx5855

Our continuing studies on the physiological and biochemical characterization of maize embryogenesis have depended upon anatomical studies of Abbe and Stein (1954). The major anatomical stages were conveniently identified by the number of leaf primordia which had differentiated in the developing embryo. For instance Stage 1 is characterized by the differentiation of one leaf primordium, Stage 2 by 2 primordia, etc. Abbe and Stein completed their studies using inbred line A188 grown in Minnesota. The coleoptilar stage developed in 12 to 14 days, Stage 1 in 14 and 18 days, Stage 2 in 18 to 22 days, Stage 3 in 22 to 28 days, Stage 4 in 28 to 37 days, Stage 5 in 37 to 50 days and Stage 6 in greater than 50 days. It was evident from our earliest studies that some modification of the developmental time scale would be required since only 30 days after pollination are required for kernel development in several inbred lines adapted to our growing region (Texas).

Inbred line Tx5855 was pollinated and bagged in the field. Kernels and embryos at various times after pollination were collected and immediately fixed in Craft's II fixative (Sass, 1940). Tissues were dehydrated in alcohol, embedded in paraffin, and the entire kernel or embryo was serial sectioned (6 microns thick). Sections were cleared and stained with safranin and fast green. The coleoptilar stage is evident at 9 days, Stage 4 at 15 days and Stage 6 at 21 days. In comparing A188 and Tx5855, the developmental time scale for Tx5855 is earlier by 4 days at the coleoptilar stage, earlier by 13 days at Stage 4, and earlier by 29 days at Stage 6. Thus the acceleration in Tx5855 embryo development is less pronounced at the younger stages and more evident at older ages.

Figure 1. Sagittal section of Tx5855 embryo, 15 days after pollination. Note the development of 4 leaf primordia.

In relation to our previous studies on maize embryogenesis in Tx5855 (Fong et al., Plant Physiol. 73:899-901) the induction of carotenoid biosynthesis (fluridone sensitivity) is maximal at the coleoptilar stage, and the phytohormone abscisic acid is maximally effective in reversing vivipary or maintaining dormancy at Stage 4 of embryogenesis. The morphological and physiological characteristics of embryogenesis provide a convenient basis of comparison between studies done with different inbred lines or at different growing regions.

Franklin Fong and J.D. Smith

COLOGNE, WEST GERMANY

Institut für Genetik and Max-Planck Institut für Züchtungsforschung

Studies on Ac-derived mRNA

mRNA was isolated from various Ac-containing maize lines and tissues (seedlings, endosperm, adult plant) and hybridized with Ac-derived probes. A 3.5 kb band segregates with Ac; other hybridizing bands are detected also in Ac-free material. Without exception, the 3.5 kb band is seen on Northern blots when the plant genome contains Ac. The expression level varies only slightly between different plant tissues.

cDNA libraries were prepared and screened with Ac. Three overlapping clones were isolated which are probably derived from the 3.5 kb transcript, and sequenced. They span together 3.1 kb on the Ac sequence, not including the 4 introns. A long untranslated leader precedes an ORF 807 amino acids in length. The first 2 ATG's to open this frame are not enclosed by Kozak's consensus sequence. To elucidate the ability of the translation apparatus to accept this first ATG as a start signal, the cDNA was transcribed in vitro and the products translated in vitro in two systems. The products were slightly larger than expected when the first ATG was used as the start. In addition, the N-terminal end of the protein was sequenced and by this means it was clearly demonstrated that the first ATG is used as a start site in vitro. The 5'-end of the transcript could not be isolated as cDNA. Instead, a 1 kb long uniformly labeled single-stranded DNA fragment was used as a probe in a S1-protection assay.

This probe overlaps terminally 158 bases with the 5'-end of the cDNA, its 3'-end extends beyond the Ac element. Upon S1 digestion a cluster of bands spanning a range of nearly 80 bases is detected. There appear to be two major start sites, 334 and 358 bases distant from the end of Ac. To exclude the possibility of the existence of another short exon close to the 5'-end of Ac, a 100 bases long M13 probe starting 54 bases upstream of the more 5' located major transcription start site was constructed. This probe does not hybridize on a Northern blot with the 3.5 kb band, whereas a similar probe reaching 120 bases farther downstream and thereby overlapping 65 bases with the more 5' located major start site clearly hybridizes with this 3.5 band. The detection limit under these hybridization conditions was shown to be better than 20 bases. First results from primer extension experiments seem to confirm the S1 results.

> Reinhard Kunze, Ursula Stochaj, Ulrike Courage, Jürgen Laufs and Peter Starlinger

An initial functional analysis of Ac in tobacco

We have developed a method to detect the frequency with which Ac excises from a neomycin phosphotransferase II (NPTII) gene (Baker et al., this issue). This system is now being used to determine which sequences within Acare required for the excision process. Ac derivatives were constructed in vitro and inserted at the same position within the NPTII gene as described previously for Ac. These experiments differed slightly from those of Baker et al. in that the T-DNA of the Ti-plasmid also contained a hygromycin resistance gene expressed in tobacco protoplasts, which rendered these resistant to the antibiotic hygromycin. Therefore, in these experiments, hygromycin resistance indicated the T-DNA was successfully transferred to tobacco, and kanamycin resistance indicated that Ac had excised from the NPTII gene.

The Ac derivatives tested so far are shown in Figure 1. Whether or not they are capable of excision is also indicated. These data, together with our knowledge of the only Ac transcript so far detected (Kunze et al., this issue) allow us to make certain predictions of how Ac may be organized.

Four Ac derivatives (in plasmids pKU36, pKU32, pKU33 and pKU31) which contain deletions within the long 5' untranslated region of the Ac transcript are all capable of excision. At least 400 bp of the leader (in pKU31) are unnecessary for transposase expression and for excision. However, the Ac derivative present in pKU30 is incapable of excision. This derivative contains BglII linkers inserted at the EagI site within the leader. It is not clear why the insertion of BglII linkers in pKU30 prevents transposition while the insertion of the same linker at the endpoints of the deletions indicated above does not. It is known that in pKU30 there is more than one BglII linker in tandem as this has created a *PstI* site, but this is also true of pKU31 and pKU32. We are presently determining the nucleotide sequence of these derivatives to try to answer these questions.

Although deletions within the leader of the Ac transcript did not prevent excision, deletions removing part of the long open reading frame did. This was indicated by the Ac derivatives present in pKU35 and pKU9. In pKU9 the deletion has removed the 5' end of the open reading frame including the first two potential ATG initiation codons within the long open reading frame. This further suggests that translation of the open reading frame initiates at one of these two ATG codons, and not at one farther downstream (see Kunze et al., this volume).

The sequences deleted from the Ac derivatives present in plasmids pKU37, pKU19 and pKU29 are not within the Ac encoded transcript. These three derivatives cannot undergo self-catalyzed excision. The derivative present in pKU37 has lost the terminal sequences of Ac which are probably necessary for recognition of the ends of Ac by the transposase prior to excision. The sequences deleted from pKU19 and pKU29 may be required for recognition of the end of Ac by the transposase, for expression of the transposase (e.g., a promoter sequence) or for both of these. Experiments are underway to distinguish these possibilities. In addition, we are constructing further deletions to characterize more exactly the sequences required at the ends of Ac for recognition by the transposase, and are constructing point mutations within the open reading frame to try to determine which areas of this are required for transposase expression.

> George Coupland¹, Barbara Baker,² Jeff Schell² and Peter Starlinger¹ ¹Institut für Genetik ²Max-Planck Institut

Legend to Figure 1

A. The 1500 bp of Ac from the end containing the BamHI restriction site. Important restriction sites are indicated. The upper line indicates the mRNA positioned above the region which encodes it, and the gap in the upper line denotes the first intron. The AUG marked is the first potential start codon within the mRNA (see Kunze et al., this issue).

B. A Bal31 mediated deletion from the ClaI restriction site. This removed the terminal 92 bp. After Bal31 digestion a BgIII linker was inserted.

C. Constructed as B. Removed 38 bp around ClaI. The terminal inverted repeat is intact. After Bal31 digestions a Bg/II linker was inserted.

D. Deletion of the 105 bp ClaI-BamHI fragment.

E. Insertion of Bg/II linkers at the EagI site. EagI is an isoschizomer of XmaIII. There are three recognition sequences within 40 bp of one another. It is not known into which one the Bg/II linkers are inserted.

F-J. Bal31 mediated deletions from the *Bg*/II linker described in E. The deletion sizes were estimated after agarose gel electrophoresis to be: F, 50 bp; G, 200 bp; H, 250 bp; I, 350 bp; J, 400 bp. *Bg*/II linkers were inserted at the end points of these deletions. K. A 120 bp Bal31 mediated deletion from the *Mst*II site. Dash (—) denotes that these derivatives produced less than 1% of the number of Km-resistant calli found with intact *Ac*. The number of hygromycin-resistant calli was approximately equal after transformation with each derivative.

Transcription of Adh1-2F11::Ds2

We studied the transcription of the Adh1-2F11::Ds2allele. In this allele a Ds2 element (described in MNL 1986 by A. Merckelbach and P. Starlinger) is inserted in the fourth exon of Adh1.

In Northern blot hybridizations with an *Adh1*-specific probe two bands light up:

1. A 3 kb transcript that has the combined length of wildtype Adh1 RNA plus the length of the insertion.

2. A transcript of about 1.6 kb (described in MNL 1983

by S. Hake and M. Freeling).

Only the 3 kb band is detected with a Ds2-specific probe. The 1.6 kb RNA cannot be a transcript of an Adh1 allele created by the excision of the Ds2 element as it was also seen in Ac-free maize lines.

By Southern blot hybridizations it was confirmed that the Ds2 element still resides at the Adh1-locus. For further analysis of the 1.6 kb RNA we prepared a cDNA library and screened for clones that hybridize to Adh1 but not to Ds2 probes. Recombinant phages were partially sequenced around the insertion site of the Ds2 element in Adh1.

The cDNA clones sequenced are derived from RNA molecules that have lost 132 bp of the 5' part of exon 4

including the whole Ds2 sequence. This mRNA molecule must be the result of a splicing of the normal 5' donor splice site at the beginning of intron 3 to a cryptic 3' acceptor splice site in exon 4. The acceptor splice site used is not visibly inferior to the one terminating intron 3.

Is this cryptic splice site also used in the wildtype or is it activated only in the 2F11 allele by the Ds2-element? To test this we did Northern blot experiments with a synthetic oligonucleotide that spans the abnormal splice junction and thus can hybridize only to the aberrantly spliced 1.6 kb RNA molecules. This oligonucleotide probe detected a 1.6 kb mRNA in Adh1-2F11, but not in wildtype material.

Some other abnormal transcripts of the Adh1-2F11allele were detected. One group of cDNA clones was derived from RNA molecules that were terminated and polyadenylated at two different sites in intron 3. In addition one cDNA clone that had lost the Ds2 element and part of exon 4 by aberrant splicing was terminated in intron 6.

This analysis shows that the insertion of a *Ds2* element can drastically alter transcription termination and the splicing pattern at a distance to the insertion site.

Rüdiger Simon and Peter Starlinger

Phenotypic assay for excision of the maize controlling element, Ac, in tobacco

The maize controlling element Ac was previously shown to transpose in tobacco cells (Baker et al., Proc. Natl. Acad. Sci. USA. 83:4484, 1986). We report here a phenotypic assay designed to detect excision of Ac from a selectable marker gene, neomycin phosphotransferase II (NPTII). An NPTII gene which expresses Km resistance in tobacco cells, and contains a unique restriction site in the transcriptional leader, was constructed in plasmid pKU2. Ac, or an internally deleted defective Ac element, was inserted into the leader of this gene in plasmids pKU3 and pKU4, respectively. These insertions inactivate the NPTII gene. These three plasmids were inserted into the T-DNA of the Agrobacterium tumefaciens Ti-plasmid pGV3850, and then transferred to regenerating tobacco protoplasts. The transformed cells were selected with 100 or 200 mg/l kanamycin (Km). Protoplasts transformed with pGV3850::pKU3 formed approximately 22% (100 mg/l Km) or 30% (200 mg/l Km) as many Km^r calli as protoplasts transformed with pGV3850::pKU2. Protoplasts transformed with pGV3850::pKU4 formed approximately 4% (100 mg/l Km) or 0% (200 mg/l Km) of the number of Km^r calli obtained after transformation with pGV3850::pKU2 (see Table 1). Southern blot analysis of five of the rare Km^r calli transformed with pGV3850::pKU4 and selected on 100 mg/l Km showed no evidence of excision of the transposon sequences, and were produced by an unknown mechanism. However, similar analysis of seven Kmr calli formed after transformation with pGV3850::pKU3 revealed that in all cases Ac had excised, restoring the structure of the NPTII gene.

This assay is being used to perform functional analysis of Ac (see Coupland et al., this issue). Several features of the phenotypic assay can be employed in the design of appropriate plasmid vectors using the Ac/Ds family of elements as mutagens and gene tags.

Barbara Baker¹, George Coupland², Nina Fedoroff⁶, Peter Starlinger² and Jeff Schell¹

¹Max-Planck-Institut für Züchtungsforschung ²Institut für Genetik

³Carnegie Institution of Washington, Baltimore, MD

Multiple transacting factors may be involved in the regulation of the sucrose synthase gene

The shrunken gene on chromosome 9 is regulated during plant development and exhibits positive and negative control mechanisms (Springer et al., Mol. Gen. Genet., in press). It is therefore a good candidate for studying plant gene regulation.

We have started to identify regulatory proteins which interact with the promoter of the shrunken gene. In the first step we had to adapt a nuclei isolation procedure to different tissues of the maize plant including immature kernels (20 days after pollination), primary roots, shoots and mature leaves. Low salt (250-300 mM) protein extracts from the isolated nuclei were prepared and tested in gel retardation experiments for specific protein DNA interactions. With nuclear protein extracts prepared from immature kernels we see several interactions with small radioactively labeled DNA fragments from the promoter region of the shrunken gene. The strongest interactions are found with several overlapping DNA fragments containing the sequences between -234 and -77. Another DNA protein complex is formed with DNA fragments spanning the sequences between -600 and -577. A weak interaction is found between -77 and +41 with the fragment containing the TATA box and the transcription start. The complexes are stable in the presence of 1000-2000 fold excess of unspecific competitor DNA but formation of visible complexes is abolished in the presence of a low

Table 1

Number of kanamycin-resistant colonies derived from tobacco protoplasts infected with Agrobacterium tumefaciens strains. A. Total number of colonies that grew after selection with kanamycin as indicated. For experiments 2, 4, 5, 6, 7 and 8 colonies were counted directly from bead culture after 5 or 6 weeks of selection. For experiments 1 and 3 colonies were counted that grew after transfer of callus colony from bead culture to solidified MS agar medium containing 100 ug/ml Km. In experiments 4 and 5 protoplasts infected with pGV3850::pKU4 did yield Km^r calli (8 calli, experiment 4; 2 calli, experiment 5) when 2.5×10^5 and 2.2×10^5 protoplasts, respectively, were plated. These figures represent 1.0% and 0.3% of the number of pGV3850::pKU2 transformants in experiments 4 and 5, respectively.

B. The number of kanamycin resistant transformants after transformation with indicated A. tumefaciens strain expressed as a percentage of the pGV3850::pKU2 value normalized to 100% in each experiment.

*: Number of protoplasts infected with indicated strain of *Agrobacterium*. Number of cells surviving was estimated to be 30-50% of the starting number of protoplasts.

	Agrobacterium strain												
Experiment	Number of infected	Km	pGV385	0::pKU2	pGV385	0::pKU3	pGV385	0::pKU4	pGV3850	0::pKU27	pGV3850	::pKU11	
	protoplast	s#	A	В	A	В	A	В	A	В	A	В	
1	2.1 x 10 ⁴	100	185	(100%)	50	(27%)	17	(98)		₹.		-	
2	2.1×10^4	100	78	(100%)	16	(21%)	0	(0)		-	į.	-	
3	2.1 x 10 ⁴	100	140	(100%)	27	(19%)	4	(2.5%)		-		-	
4	3.15×10^4	200	274	(100%)	70	(25.5%)	0	(0)	146	(53%)	0	(0)	
5	5.60×10^4	200	224	(100%)	91	(40%)	0			-			
6	1.3 x 10 ⁵	200	140	(100%)	51	(36.4%)	0	(0)		-			
7	1.3 x 10 ⁵	200	120	(100%)	42	(35%)	0	(0)		-		-	
8	1.3 x 10 ⁵	200	197	(100%)	26	(13%)	0	(0)		-		-	

excess of homologous DNA fragments. At the moment we are in the process of footprinting this interaction on the nucleotide level.

Wolfgang Werr, Regina Bellmann, Boris Springer, Hans-Jürgen Joos and Peter Starlinger

Chromatin structure of the sucrose synthase gene

We have tried to study chromatin structure in the 5' upstream region of the sucrose synthase gene. This gene is active in endosperm, inducible by anaerobiosis in roots and shoots, and hardly expressed in leaves (Springer et al., Mol. Gen. Genet., in press). We have tested for the presence of DNaseI hypersensitive sites.

Nuclei were isolated essentially as described by Rowland and Strommer (PNAS 82:2875-2879, 1985) with modifications for tissues other than roots. Though contaminated with cell wall fragments they contained high molecular weight DNA. The chromatin could be degraded by micrococcal nuclease or MPE (Fe^{2+}) to yield the typical nucleosomal ladder of about 180bp repeat length.

The nuclei are active in run-off transcription. By this method it could be shown that anaerobiosis induces sucrose synthase at the transcriptional level. The maximum levels of initiation occur after a few hours submersion of the seedlings in water roughly as for Adh1 (Rowland and Strommer, Mol. Cell. Biol. 6:3368-3372, 1986).

In nuclei isolated from kernels a set of DNaseIhypersensitive sites could be identified which extends more than 1 kb into the 5' region. The major sites (+/-50) bp) are located relative to the transcription start at positions +50, -25, -180, -280. The same major sites are seen in nuclei from isolated endosperm. No sites were detectable in naked genomic DNA. The same major sites in front of the transcription start are found both in aerobic and anaerobic (6h) roots.

> Wolf-Bernd Frommer, Philipp Franken and Peter Starlinger

COLUMBIA, MISSOURI University of Missouri and USDA, ARS

Mutator-induced PSII photosynthesis mutant is allelic to *hcf3*

A mutation isolated from among M2 progeny mutagenized with Robertson's Mutator (MNL 60:46) has been found to be allelic to the EMS-induced mutation responsible for the photosynthetic mutant hc/3 (Leto and Miles, Pl. Physiol. 66:18). hc/3 has been described as "one of the most extensively characterized PSII-deficient mutants in higher plants" (Somerville, Ann. Rev. Pl. Physiol. 37:483). It exhibits a high level of chlorophyll fluorescence, abnormal fluorescence induction kinetics and lacks electron transport activity through PSII. Polypeptides associated with PSII are severely reduced or missing when membrane proteins are examined by LDS-polyacrylamide gel electrophoresis. The hc/3 lesion has been located on chromosome 1S but no information about the nucleotide sequence of the gene or about its product is available.

The isolation of a mutation allelic to hcf3 which is tagged with the Mu transposon opens the door to the cloning and characterization of the gene and its translation product. Ultimately this may lead to a better understanding of the nature of the mutation in particular and of

44

the structure and function of PSII in general. We are currently considering the most appropriate method of cloning the Mu-tagged gene.

Allelism was tested by crossing pollen from M2 progeny of the Mu mutagenesis onto the ears of progeny of the original hcf3 isolate. Eight of 50 progeny of this cross exhibited high fluorescence and the expected fluorescence induction kinetics. The genotypes of both parents of this cross were confirmed. Three other crosses between siblings of this parent and plants bearing hcf3 in other backgrounds also produced progeny with hcf3 characteristics. For these crosses, only the Mu parents' genotypes were confirmed.

Bill Cook and Don Miles

Mutator-induced mutation on 8L affects the chloroplast cytochrome b₆/f complex

A mutation affecting the cytochrome b_6/f complex which was isolated from among M2 progeny mutagenized with Robertson's Mutator was uncovered by TB-8Lc. The mutation, 1113-3 (a lab designation), is a nuclear lesion which results in the loss of the cytochrome b_6/f complex of photosynthetic electron transport.

Mutant plants have an easily detected yellow-green phenotype and exhibit abnormal chlorophyll fluorescence and fluorescence induction kinetics. Staining of thylakoid polypeptides with 3,3',5,5'-tetramethylbenzidine (TMBZ) following separation by LDS-polyacrylamide gel electrophoresis reveals the loss of cytochromes b_6 and f from the mutants. They are also significantly reduced in electron transport activity through the complex.

TB crosses were made and harvested by Dan England, for which we are grateful. We identified 6 of 90 progeny which were yellow-green, had abnormal chlorophyll fluorescence and the expected induction kinetics and also lacked cytochromes b_6 and f on TMBZ stained gels.

Concurrent tests of allelism with *hcf2* and *hcf6* (located on 1L and 1S respectively) were reassuringly negative.

Bill Cook, Marj Hunt and Don Miles

Location and designation of duplicate factors for orange pericarp, *orp1* and *orp2*

Duplicate factors conditioning orange pigment in the pericarp overlying doubly homozygous (orp1 orp1, orp2 orp2) kernels, reported last year (MNL 60:55), have now been located to chromosomes 4 and 10 respectively. The first of these genes was located on chromosome 4 using a modification of the method described by Kindiger and Beckett (MNL 60:43). This was done by first crossing a stock homozygous for one factor and heterozygous for the other (from an ear showing 3:1 segregation instead of 15:1) by the full B-A chromosome set. Heterozygosity for one factor was required because the double homozygote does not survive to flowering. This material was planted and hypoploids were identified for each translocated arm. Hypoploids plus a few normal plants in each case were selfed and the resulting ears were examined for 15:1 vs. 3:1 segregation for orange pericarp. The former would occur in the double heterozygote +/orp1, +/orp2 hypo/() where the mutant was not on the hypoploid arm. The latter would occur when the factor was located on the hypoploid arm orp1/(), +/orp2. Hypoploid selfs for all but TB-4Sa and TB-4Lf gave the expected 15:1 segregation (TB-10Sc

and TB-10L19 were not tested). Two families of TB-4Sa gave 18 semisterile ears (hypoploids) of which 11 had an apparent 3 normal : 1 orange segregation (the other 7, as well as the nonspecified ears below, did not segregate), and 8 normal ears of which 4 had a surprising 61 normal : 1 *orp* segregation. One family of TB-4Lf gave 6 semisterile ears of which 1 had a 3:1 segregation, and 9 normal ears of which 4 had a 15:1 segregation (a summary of counts of some of these ears appears in Table 1). The difference in

Table 1. Proportion of *orp* kernels on selfed ears from normal and hypoploid plants from the cross of *orp1 orp1* + *orp2* or + *orp1*, *orp2 orp2* by the B-A translocations TB-4Sa and TB-4Lf.

TRANSLOCATION	Ears	Total Kernels	Normal	orp	N/orp
TB-4Sa	2N 755	984 923	968	16	60.5
TB-4Lf	1N	470	443	27	16.4
	155	105	83	22	3.8

ratios on the normal ears (4S, 60:1 and 4L, 15:1) from plants that probably were hyperploid for their respective arms proves that one member of the duplicate pair is actually located on 4S and not on 4L.

Fortunate circumstances provided the location of the other member on chromosome 10 even though the B-A crosses for 10S and 10L failed to give segregating ears because a homozygous normal female was selected. In several of the selfed ears from the other B-A crosses a segregation for aleurone color due to R occurred. Classification of orange pericarp on colored kernels is difficult but possible by examining the pericarp overlying the embryo. An examination of selfed ears from normal plants segregating 3:1 for aleurone color and 15:1 for orange pericarp revealed an excess of orange kernels in the colorless (rr) class (Table 2). This indicates that the selfed plants were

Table 2. F2 phenotypes for selfed ears segregating 3:1 for a leurone color and 15:1 for orange pericarp. N = normal, mostly hyperploid TB-9Sb. SS = semi-sterile ear of hypoploid TB-9Sb. Segregation of 15:1 on SS ears proves *orp* is not on chromosome 9.

EAR TYPE	Kernels	Orp R	orp R	<u>Orp</u> r	orp r
N	437	322	9	90	16
N	426	316	8	82	23
N	347	249	8	77	13
SS	222	149	1	65	7
SS	201	143	8	45	5
SS	178	_134	_2	34	8
TOTAL	1811	1310	36	393	72

orp r/Orp R with r and orp linked in coupling, and provides F2 data from which an orp r map distance may be derived. The segregation ratio of R:r was 2.9:1 and for Orp:orp was 15.8:1, which is not significantly different from the expected 3:1 and 15:1. The map distance calculated by maximum likelihood is 19 \pm 3 centimorgans.

In view of these findings we have designated the duplicate factor on 4S as *orp1* and the one on 10 linked to *r* as *orp2*.

M.G. Neuffer, J.B. Beckett and Allen Wright

Gene expression in NCS2 mutant plants

The maternally inherited Nonchromosomal stripe (NCS) mutants in maize are characterized by variable leaf striping,

poor growth, and decreased yields (Shumway and Bauman, Genetics 55:33; Coe, Maydica 28:151). It has been shown that the phenotypically distinguishable NCS2 and NCS3 mutants have distinct alterations in their mitochondrial DNA (mtDNA) restriction enzyme profiles, relative to their common progenitor cytoplasm, cms-T (Newton and Coe, PNAS 83:7363). To determine whether the observed DNA alterations in the NCS2 mutant are functionally significant, we used several approaches. Proteins synthesized by mitochondria isolated from mutants and from related plants with normal growth have been compared. NCS2 mitochondria synthesize very reduced amounts of a single polypeptide (approximately 24 kD).

Clones containing previously characterized plant mitochondrial genes were kindly provided by Sam Levings, Chris Leaver, Dave Stern and Axel Brennicke. They were used to test whether any of these genes had altered structure or expression in NCS2. Southern blot analysis with labeled probes for cytochrome oxidase subunits I, II and III; ATPase subunits 6, 9 and alpha; cytochrome b; URF1 and ribosomal RNA genes demonstrated that the DNA regions with these genes (or homologous sequences) appear to be the same in NCS2 mutant and related normal plants. Northern blot analysis of mitochondrial RNAs, using these same probes, showed similar transcripts were produced in NCS2 and related non-mutants.

An 11kb NCS2-specific *Hin*dIII fragment was cloned and tested by Southern and Northern blot analysis. It detects the NCS2 mtDNA alterations observed with several different restriction enzymes (it is not homologous to the NCS3 alterations.) This probe hybridizes to an aberrant set of transcripts in NCS2 mitochondria, relative to normal mitochondria.

Thus, in NCS2 mutants, the synthesis of one mitochondrial protein is reduced and one set of transcripts, homologous to the NCS2-altered region of mtDNA, is also aberrant.

Heidi Feiler and Kathleen Newton

NCS2 mutants: ultrastructural observations

NCS2 mutant plants are characterized by pale green stripes on leaves and defective kernel sectors on ears. Specific mitochondrial DNA changes were found to correlate with the phenotypic alterations (Newton and Coe, PNAS 83:7363). Furthermore, specific differences in mitochondrial gene expression are found in mutant plant material (Feiler and Newton, MNL 1987). We were interested in determining whether ultrastructural alterations could be observed in the mutant tissues and organelles. For this initial study, a pale green sector on an NCS2 leaf was compared with a section of a leaf from a normal plant. Both plants were field-grown and leaf samples were chosen at comparable stages of development.

Light and electron microscopic examinations revealed an altered general morphology of affected NCS2 tissue. At the lower magnifications of the light microscope, one can observe abrupt shifts from normal to affected cells. A conspicuous asymmetry in the vascular bundles and bundle sheaths is seen, especially under low magnification of the resin prepared material. This distortion could reflect the actual situation in the plant or it may result from the cells being more fragile and subject to damage by the rather harsh preparation procedures. At higher magnifications (30,000-fold) the internal organization of the organelles can be compared. In mutant cells, the mitochondria have lost most of their internal membrane (cristae) structure. The inner and outer mitochondrial membranes appear to be more closely appressed. Ribosomes appear to be present and many DNA-like fibrils are also observed in the mutant mitochondrial matrix.

Chloroplasts are also affected in pale green sectors of NCS2 plants. Thylakoid membranes are present but there is some loss of stacking and a reduction in stromal constituents. In the bundle sheath cells, normal starch grains are absent and appear to be replaced by osmiophilic bodies.

The maternally inherited NCS2 mutants have altered mitochondria and chloroplasts in affected tissues. The correlation between phenotype and the mitochondrial genome is well established for this mutant. The effect on the chloroplast is presumed to be a physiological effect. It is not yet known whether the mitochondrial ultrastructural alterations are a result of a direct effect on mitochondrial biogenesis or of an indirect physiological effect.

Deborah Thompson and Kathleen Newton

Further genetic study on involvement of the P locus in silk browning

C.S. Levings and C.W. Stuber (Genetics, 1971) showed that browning of cut ends of silks of inbred lines T61 and NC232 is under monogenic control in crosses and backcrosses with Kys and NC236. In MNL 60:50 and 59:40, we suggested the control of silk browning by the P locus, based on the observation that the cob color of P locus and silk browning were not separated by genetic recombination. White cob and browning inbreds that we tested further are the following: K44, K166, Ky228, Mo1W, Mo14W, 79-R1141, 79-R1193, Mo22, and K64. Interestingly, one plant of 15 F2 progeny was nonbrowning, red cobbed from the cross of browning, red cobbed W23 to 79-R1193, one of the white cob and browning inbreds. This indicates the possibility that the phenotypic expressivity of silk browning, mediated by the P locus, could be dependent on genetic background or be labile to physiological conditions. We are conducting further genetic examination of those possibilities.

	14	F 1	FZ		
Cross	в	NB	В	NB	
K44/79-R1141	21	1	36	3	
K44/79-R1193	26	0			
K44/Mo14W	21	0	30	0	
K44/Ky228	23	0	32	1	
K44/K166	16	0		7	
79-R1141/79-R1193	10	0	15	0	
79-R1141/Mo14W	-	-	20	0	
79-R1141/MolW	4	0	43	0	
79-R1141/Ky228	22	0	36	0	
Mo22/Ky228	22	0	-	-	
79-R1193/Mo22	10	0			
79-R1193/Mo14W	23	0	47	0	
79-R1193/Ky228	17	0	43	2	
79-R1193/K166	24	0	38	0	
Mo1W/79-R1193	20	0	44	0	
Mo1W/K166	22	0	44	0	
MolW/Ky228	17	0	33	0	
MolW/Mol4W	18	0	43	0	
K166/79-R1141	21	0	41	0	
K166/Mo22	20	0	41	0	
K166/Mo14W	22	0	43	0	
K166/Mo1W	23	0	30	0	

B: silk browning NB: silk nonbrowning To further examine whether browning of silks in those white cobbed inbreds results from possible involvement of a duplicate factor separable from the P locus or from allelic relationship, we intercrossed silk browning, white cob inbreds and selfed the progeny.

All but one of the F1 progenies, and all but three of the F2 progenies, showed only browning silks. Since silk browning is a dominant character, 1 nonbrowning plant out of 21 F1 progeny of K44/79-R1141 could be due to seed contamination or to low expressivity resulting from physiological conditions. The same explanations could apply to nonbrowning plants of F2 progeny of K44/79-R1141, 79-R1193/Ky228, and K44/Ky228 (3 out of 36, 2 out of 47, and 1 out of 23, respectively). All F2 progeny of 79-R1141/ Ky228 and 79-R1141/79-R1193 showed silk browning, but F2 data for K44/79-1193 and Ky228/79-R1141 are not available. These observations favor the conclusion that the determinant of browning of cut ends of silks, which was not separable from the P locus by genetic recombination, is of allelic relationship, even though larger samples are needed for more tests.

Chang-deok Han and Ed Coe

Survey for inbreds carrying homozygous whp

Several inbreds had been tested for whp constitution (Coe, MNL 56:49). All of the inbreds (Ky21, Mo20W, Ky27, L289, and Mo17) have been identified to carry dominant Whp (yellow pollen with c2 c2). To further test for whp, 32 inbred lines were crossed onto and backcrossed with C2/c2 *whp/whp* plants of K55, which is an original source of the whp factor. Colorless $(c2 \ c2)$ seeds from the backcrosses were planted for observation of pollen color. The inbreds we tested are the following: K41, K63, K64, K150, K155, K302, K303, K304, K306, K814, K816, FR802, FR807, FR809, FR810, FR29, FR35, FRM017WC, W77-R3027, 78-S159, 79-R1130WC, 79-R1141, 79-R1193, Mo14W, Mo1W, Mo16W, Ky228, A619, Oh51a, B73Ht, and CI66. Only one of the inbreds, FR810, shed white pollen in the c2 c2 progeny (15 plants). This inbred consequently is either homozygous for whp, or at least carries the factor. Because FR810 carries C2, however, its pollen is yellow.

Chang-deok Han and Ed Coe

Flavonoid 3-hydroxylase in aleurone

Flavonoid 3-hydroxylase has been demonstrated using freshly peeled intact aleurone tissue as the source of the enzyme in the reaction mixture. The reaction requires α -ketoglutarate, ascorbic acid and Fe^{2+}. Eriodictyol serves as a substrate, resulting in the formation of dihydroquercetin, which can be chemically oxidized to quercetin. Quercetin has been identified by thin layer and high performance liquid chromatography. Thus far it has not been possible to obtain catalytic activity free of the intact aleurone tissue, nor has it been possible thus far to obtain any information as to what gene(s) influence hydroxylation.

Russell L. Larson

Barren-stalk-fastigiate, baf, chromosome 9S

Material segregating for a recessive barren-stalk was provided by C.R. Burnham. Expression in segregating progenies is variable for barren-stalk, most plants having neither an ear nor the characteristic "ear notch" in the culm, but occasional ears do develop and produce seed. The ear shanks are modified, having a lengthened internode between the node and the prophyll and a vertical, flattened shank that is often fused with the accompanying internode. The internode tends to curve into a distorted arc and often cracks horizontally. The tassels remain bundled vertically, the branches failing to drop to a horizontal position; the branches show elongated, spindly form reminiscent of broom corn sorghums; the pulvinus does not develop or does not expand, leaving the bundle of branches unspread. The symbol *baf*, barren-stalk-fastigiate, is assigned.

TB-9Sb uncovers this factor (listed as ba*-s in MNL 59:40), so it is distal to wx and w11. An F1 of sh bz wx/bafwas testcrossed to sh bz wx, and recombinants were selected, self-pollinated and progeny tested for baf. Six + + wx individuals did not segregate for baf (the numbers of plants observed, however, were very small, totalling 30 plants for all six progenies; nonetheless this shows that recombination with bz is higher than with wx). Seven shbz + individuals segregated for baf, and one did not (among 11 progeny). Two sh + + individuals both segregated for baf. Since baf is distal to wx, the order is clear: shbz baf w11 wx. If the one sh bz + individual that did not segregate is correctly classified, it is the only crossover between baf and wx in this small experiment, suggesting that baf may be very close to w11.

Ed Coe and J.B. Beckett

Linkage data for luteus-7, chromosome 9S

Among 562 F2 plants from sh bz wx/l7, no sh l7 or bz l7progeny were observed. Counts involving wx were 276 + +, 173 + l7, 110 wx + and 3 wx l7. The estimated distance for L7 to Wx is 14.4 map units; for Sh to L7, less than 10.1; for Bz to L7, less than 9.9.

Ed Coe

v30 (was v*-8587) linkage data, chromosome 9L

The virescent known as v^* -8587 can be designated v30, as it is uncovered by TB-9La, is not allelic to v1 or ar, and has a map location well away from either of these virescents. Testcross data were obtained for the cross of + + WcBf/bk2 v30 + + x bk2 v30 + +.

P	+ + Wc Bf	46		
P	bk2 v30 + +	52		
1	+ v30 + +	2	Bk2 - V30	4.6 + 1.7
1	bk2 + Wc Bf	3		
2	+ + + +	15	V30 - Wc	19.0 + 3.2
2	bk2 v30 Wc Bf	11		
3	+ + + Bf	11	Wc - Bf	15.7 + 2.9
3	bk2 v30 Wc +	9		
1-3	+ v30 + Bf	1		
2-3	+ + + Bf	2		
1-2-3	bk2 + + Bf	1		
	Total	153		

The order of the factors, bk2 v30 Wc Bf, appears to be reliably defined. The numerical data may be subject to some modification after a few retests; in particular, conditions were poor in the field and classification of v30, while generally reliable, was occasionally uncertain and has been assumed for some of the above testcross plants.

Ed Coe

Anthocyaninless-lethal, anl1, chromosome 5S

The new anthocyanin factor(s) reported by Coe and Neuffer in MNL 60:54 on 5S resolve to a single group of allelic mutants. Six occurrences have been identified in progenies from EMS treatments. Allelism tests with a2 are negative, as are tests with ps and vp2. All are homozygous inviable and fail to germinate, though the embryo appears normal and in rare instances poor seedlings arise but die. Small kernels are typical of four of the occurrences more or less regularly; there is sufficient variation in this to indicate that it is an expression subject to modifiers. Low ratios are also common, but not constant; tests for involvement of the gametophyte factors on chromosome 5 have not been conducted. Two of the occurrences have a pale-aleurone expression rather than colorless; one of the two expresses the color in irregular spots, while the other is uniformly pale. The individual occurrences have characteristics as follows:

anl1-p1634	pale aleurone; rare seedlings, die
anl1-1643	colorless; rare seedlings, die
anl1-1645	colorless; small kernels
anl1-1671	colorless; small kernels
anl1-p1673	colorless; pale spotted
anl1-1685	colorless; small kernels
anl1-1691	colorless; small kernels

Among progeny from crosses with markers on chromosome 5, two of the colorless types have become pale in expression; modifiers may influence the color development, or may confer the missing function with low activity.

Linkage analysis places anl1 distal to a2. Specifically, colored nonbrittle kernels from testcrosses of $+ a2 \ bm \ bt$ $pr/anl1 + + + + x \ a2 \ bm \ bt \ pr$ were selfed and classified. Of 28 kernels, 3 carried a recombinant + + + + + strand and the remaining 25 carried anl1 + + + +, demonstrating that anl1 is distal to a2 and roughly 10 units away. F2 data are also consistent with the position and the distance.

Ed Coe

Location of nec2 on chromosome 1S

Mapping studies involving the seedling necrotic mutant, nec2, with dek1, zb4 and p1 have placed nec2 approximately 7 units proximal to dek1 on chromosome 1S. Seeds from the testcross zb4 p1-ww + x (+ p1-wr nec2)/(zb4 p1-ww +) were planted, scored for zb4 and selfed. Each selfed ear was then scored for cob color and a seed sample was planted in the sandbench and scored for nec2. The following data place nec2 approximately 9 units proximal to p1.

Reg	Genotype		No.	Totals	Expected
0	+ +	nec2	59		
	zh4 p-ws	7 +	52	111	110.6
1	zb4 +	nec2	1		
	+ p-wv	/ +	4	5	5.4
2	zb4 p-wy	nec2	3		
	+ +	+	8	11	11.4
1.2	+ p-wv	nec2	1		
	zb4 +	+	0	1	0.6
zb4	p-ww	0.0469	+/- 0.018	7	
zb4	nec2	0.1250	+/- 0.029	2	
p-ww	nec2	0.0938	+/- 0.0258	8	

Seeds from the testcross, + + x (dek1 +)/(+ nec2), were planted and selfed. The resulting ears were scored for dek1, a seed sample was planted and the seedlings were scored for *nec2*. The following data were obtained.

Genot	уре	No.		
dekl	+	52		
+	nec2	45		
			dekl nec2	0.067 +/- 0.025
+	+	3		
dek]	nec2	4		

As in any testcross involving two lethal mutations, the double mutant class may be under-represented since it requires a crossover in the testcross individual in order to score the presence of both mutants. This appears not to be a major factor in this analysis as both crossover classes were roughly equal and the resulting dek1 to p1 distance of 2 units is in close agreement to the established distance. Nevertheless, the linkage distance may be greater than 7 units.

As reported by Beckett (MNL 49:130), TB-1Sb uncovers *nec2* and, thus, the breakpoint of TB-1Sb lies between *nec2* and *as1*.

Dave Hoisington

Computer programs for use in linkage analysis

During the last couple of years, I have written several computer programs to aid in the analysis of various types of linkage data. All of the programs use maximum likelihood equations to determine recombinational distances. I am in the slow process of consolidating several together into a few generalized programs and plan to port these to at least IBM compatible systems. Rather than an in-depth discussion of each, a brief description for the currently available programs follows. Please contact me if you are interested in obtaining copies of any or all of these.

- Linkage—a program that analyzes multi-point (up to 10) backcross data. Output includes total and percent of each gene class; genotype, number, total, and expected total for each crossover class; and paired recombinational values.
- ml—a computerized version of Allard's maximum likelihood equations. Most of the equations have been entered, although any additional equations can be added rather simply. Once the desired equation is selected and the number in each phenotypic or genotypic class is entered, the recombinational value and its standard error are calculated and displayed.
- ml-rfp—a program to analyze restriction fragment length polymorphism data. The current version accepts segregation data for dominant, recessive, and co-dominant traits, in backcross and F2 populations. Any combination of traits and populations can be analyzed. Also, any locus or subset of loci can be analyzed. Output includes the segregation of each locus within the population, as well as its segregation and recombination value with all other loci being analyzed.

Dave Hoisington

Les 10, a new lesion mutant located near v4 on chromosome 2L

Linkage analysis of Les*-A607, a dominant lesion

mutant kindly provided by Jerry Kermicle, has placed this mutant near v4 on chromosome 2L. Since this mutant has a different phenotype from both *Les4* and *Les*-1378* (see MNL 60:50-51 for phenotypic description) and shows linkage to both T2-9b and T2-9d, whereas both *Les4* and *Les*-1378* show linkage to only T2-9d (see following data), the symbol *Les10* is proposed for *Les*-A607*.

Translocation Backcross Data - only those crosses resulting in linkage or involved in the same chromosome are presented.

Mutant	wxT	<u>∦ P1</u>	MWx	NWx	Mwx	Nwx	Chi-square (1:1:1:1)	% Rec.
Les10	2-9ъ	254	102	32	32	88	62.70	25
	2-9d	436	157	74	71	134	49.18	33
Les4	2-9ъ	145	30	38	37	40	1.06	52
	2-9d	169	75	14	6	74	99.61	12
Les*-1378	2-9ъ	115	27	30	30	28	0.23	52
	2-9d	83	42	1	5	35	61.59	7

The following two testcrosses place Les10 near v4. Data for the testcross, lg1 gl2 wt1 + x (+ + + Les10)/(lg1 gl2 wt1 +), establish that Les10 is 15 units proximal to wt1.

Table 1. Ig1, gl2, wt1, Les10 linkage.

Reg	-	Gen	otyp	e		No.	Totals	Expected
0		+	+	+	Les10	24		
		lgl	g12	wtl	+	21	45	46.8
1		lgl	+	+	Les10	5		
		+	g12	wtl	+	4	9	8.4
2		lg!	g12	+	Les10	5		
		+	+	wtl	+	7	12	10.1
3		1g1	g12	wtl	Les10	3		
		+	+	+	+	6	9	8.4
1,2		+	g12	+	Les10	1		
		1g1	+	wtl	+	0	1	1.8
1,3		+	g12	wt1	Les10	0		
		lgl	+	+	+	2	2	1.5
2,3		+	+	wtl	Les10	1		
		lgl	g12	+	+	0	1	1.8
1,2,3		lgl	+	wtl	Les10	0		
		+	g12	+	+	0	0	0.3
	lgl		- g1	2	0,1519	+/- 0.0404		
	1g1		- wt	1	0.3038	+/- 0.0517		
	lgl		- Le	s10	0.3797	+/- 0.0546		
	g12		- wt	1	0.1772	+/- 0.0430		
	g12		- Les	s10	0.3038	+/- 0.0517		
	wtl		- Les	s10	0.1519	+/- 0.0404		

Table 2. B1, ts1, Les10 linkage.

Rgn	Ge	noty	pe	No.	-	Totals	Expected
0	÷+	+	Les10	35			
	B1	tsl	+	36		71	71.4
1	81	+	Les10	11			
	+	tsl	+	5		16	15.6
2	B1	tsl	Les10	5			
	+	+	+	2	52	7	6.6
1,2	+	tsl	Les10	0			
121000000	B1	+	+	1		1	1.4
	B1		tsl	0.1789 +	/-	0.0393	
	B1		Les10	0.2421 +	1-	0.0439	
	tsl		Les10	0.0842 +	1-	0.0285	

Testcross data for the cross, b1 ts1 + x (b1 + Les10)/B1 ts1 +) place Les10 roughly 8 units proximal to ts1, which would be near v4. Additional tests with v4 are in progress.

Dave Hoisington

Publicly available RFLP clones

Since last summer, we have been actively isolating a set of publicly available RFLP clones for maize. We were graciously provided a genomic library by Tim Helentjaris containing over 700 unscreened clones. Each of these clones is being screened against Southern blots of EcoRI, EcoRV, and HindIII digests of genomic DNA from the inbreds Tx303 and CO159 and the F1, Tx303/CO159. So far we have identified over 75 clones that detect polymorphic loci between these two inbreds. We have mapped approximately half of these in an F2 involving these same two inbreds to produce a "rough" RFLP map. In addition to our own clones, we have also probed the F2 blots with a select group of NPI clones and other cloned loci in order to establish linkages with already existing loci. Tim Helentjaris has also provided linkage data of their loci in order for us to use our data with theirs to produce a combined RFLP map. The current map with both NPI and UMC loci is presented with the working maps toward the end of this newsletter. Any of the clones we have isolated are available upon request.

On the technical side, we have resorted to isolating the insert from each clone prior to hybridizations. The presence of several "contaminating bands" in one of the inbreds and several of the F2 samples made interpretation of the blots difficult. These bands appear to be present in the original leaf material used for DNA isolation and hybridized to the plasmid (puC 8) alone. There appears to be a dichotomy among RFLP researchers for those who have problems and those who do not. We felt that even the possibility of additional bands could lead to future problems and have decided to take the extra time to isolate inserts. Basically our procedure involves digesting a miniplasmid prep with the appropriate enzyme, electrophoresis in 1% DNA grade agarose, and excising the insert band. Labelling of the isolated insert is achieved through oligolabelling of an aliquot of the diluted gel slice directly. So far, all of the clones from the genomic library have been labelled successfully. Copies of our procedures are available.

Dave Hoisington and Jack Gardiner

Toward unambiguous designations for loci defined by restriction fragment polymorphisms

The definition of polymorphisms with probes, rapidly becoming a major tool for mapping and other purposes, raises some potential ambiguities in terminology for the gene as a functional unit. We would like to propose a conservative, yet efficient and informative, symbolization of RFP loci that is consistent with current nomenclatural standards and that will minimize ambiguities, especially for probes derived from functionally defined units. We hope this proposal responds to some of the other concerns raised in the 1986 Maize Conference and reflects to a suitable degree the suggestions and comments of Cooperators who have discussed the need for a systematic nomenclature.

The ambiguity to be avoided is that of specifying a polymorphic locus as the structural gene or coding se-

quence when it is not. Probes are rapidly being obtained for functional products, e.g., enzymes for which no "Mendelizing" variation in the product has been established. For example, a genomic clone for the second sucrose synthase gene has been used to map a new locus through polymorphisms probed by the clone (D.R. McCarty et al., PNAS, 1986); an impressive number of other loci, probed by homologous or heterologous probes, is presented by T. Helentjaris and collaborators in a new report in this issue of the News Letter. Taken at face value, the assumption is easily made that the polymorphism (which is the genetically mapped property) is co-sequential with the functional gene; but it is much more probable that the polymorphism is actually in an intron or in an adjacent, noncoding sequence. While current mapping resolution makes the distinction moot for the time being, we suggest that, in the interest of accuracy, the polymorphism be defined separately from the functional unit.

Our nomenclatural suggestion is that, following the practice of T. Helentjaris in the maps to date, a polymorphic locus be defined by a number that is uniquely applied to the segregating variation, specifically mapped relative to other factors.

For the 3-letter designator, a reconsideration is in order. In MNL 60 the interim symbol RFP, with the number appended to it, was used for purposes of indexing, especially toward consolidating the loci under one source symbol. Unfortunately the use of one 3-letter symbol for all polymorphisms may lead to overlapping numbers, and would require a clearing-house system. A simple alternative is for each laboratory to choose a *distinctive 3-letter symbol for the source of the mapping study*, e.g., NPI, UMC, PIO, etc. Thus the loci will be NP11, NP12, etc., UMC1, UMC2, etc., with the number immediately following the 3-letter symbol without a hyphen, consistently with the current standards of nomenclature.

For loci that are defined by a probe for a functional product, a unique number for the locus should again be chosen by the lab that defines and maps the polymorphism. The product may, if desired, be specified by a hyphenated addition to the numbered symbol. Thus, the polymorphic locus defined by a probe for the small subunit of rubisco could be, for example, NPI227-ssu. In our current standards of nomenclature a hyphenated addition specifies allelic variations at a locus, and the particular RFP morph could be specified efficiently by numbers or letters, as with isozymes, with or without the functional specification.

This proposal is used in the working maps presented with this issue of the News Letter, and we invite comments, suggestions or critiques.

Ed Coe and Dave Hoisington

Hyperploid and hypoploid selfs provide accurate arm location of duplicate factors

Location of *orp1* on chromosome 4S demonstrates a useful aspect of the selfed-hypoploid test for locating duplicate factors. If mutant alleles of both members of the duplicate pair are present in an ear stock and are crossed by both short arm and long arm B-A translocations for the chromosome on which one member of the pair is located, then depending upon whether the mutant tested is (1) distal to the breakpoint on the short arm; (2) between the breakpoints on both arms; or (3) distal to the long arm

breakpoints, the following types, as reflected by normal to orange ratios, should occur:

CLASS	45A HYPOPLOID	RATIO	4SA HYPERPL	010	RATIO
1. <u>ml_+o</u>	<u>m1_to</u>	3:1	"	#	60:1*
2ml	*	3:1		+	15:1
3. <u> </u>	<u>ml</u>	> 3:1		 	>15:1
CLASS	4LF HYPOPLOID	RATIO	4LF HYPERPI	.0ID	RATIO
11	 	> 3:1		+ m2	> 15:1
2ml		3:1	m1	+	15:1
				m2	

*Approximation only: depends on a number of factors.

The diagnostic ratios are: 1) 3:1 ratios for all the segregating hypoploid selfs, which place the mutant on the correct chromosome; 2) 15:1 ratios for all the segregating hyperploid selfs for both translocations, which would place the mutant between the breakpoints of both arms; and (3) the 60:1 vs. the 15:1 ratios for the segregating hyperploid selfs of the respective B-A translocation, which would place the mutant on the correct arm.

M.G. Neuffer and J.B. Beckett

Designation of new recessive mutants

Over the years we have tested a large number of recessive mutants for location to chromosome arm using the B-A chromosome set. Initially mutants were placed after a single test but it was learned that a single positive test is not always correct; hence, a series of confirmation tests were conducted. There is now a group of 666 recessive mutants that have been located and confirmed to

Gene Symbol	Name	Lab Symbol	Description
		CHROMOSOME 1S	
116	luteus	1*-515	yellow seedling bleaches to paler yellow in patches
pg 15	pale green	ppg *- 3408	pale green seedling bleaches
v25	virescent	v*-17	greenish white seedling,
		CHROMOSOME 1L	Breeze tree even and a street
hcf13	high chloro-	hcf*-10978	
	phyll fluoresc	ence	
1 12	iojap	1 j*-8	white stripes; green with white margins
117	luteus	1*-544	yellow seedling with lighter
pe 16	pale green	00 #-219	pale green spedling
py2	piemy	py *- 521A	pare green mented
spc2	speckled	spc#-262A	green seedling with light
	1010100000		green speckles
z b7	zebra	zb*-101	lighter green crossbands, glossy
		CHROMOSOME 2S	
nec4	necrotic	nuc*-516B	general necrosis beginning tip of 2nd leaf, spreads to
			entire seedling
v26	virescent	v*-453	yellowish white with green tip and midrib
		CHROMOSOME 2L	15. Alter 1970 1970
1.18	luteus	1 *- 1940	yellow seedling
sptl	spotted	spt*-464	pale green with dark green
v24	virescent	v*-424	pale yellow green to pale
		CHROMOSOME 3S	8
g119	glossy	g1*-169 CHROMOSOME 3L	glossy seedling; lethal
spc3	speckled	P8 *-553C	speckled pale and dark green
vIul	white luteus	W1 *-28 CHROMOSOME 4S	pale yellow seedling
spt2	spotted	pg spt #-1269A	pale green with dark green

Gene Symbol	Name	Lab Symbol	Description
WE2	white tip	cb*-10	white tip and crossbands on first 2 leaves
		CHROMOSOME 4L	
nec5	necrotic	nec*-642A	necrotic seedling-dark brown exudate
		CHROMOSOME 55	
necó	necrotic	nec*-493 CHROMOSOME 5L	tan necrotic seedling
grtl	green rip	8 rt*- 1 308 B	pale yellow seadling with green leaf tip
nec7	necrotic	nec*-756B	necrotic seedling appears first in crossbands
ppg 1	pale pale green	cb*-199A	white with faint green; white necrotic crossbands
Wg a 1	white green sectors	sct*-206B	white with green sectors
		CHRONOSOME 6L	
ge3	green stripe	gs*-268 CHROMOSOME 7L	light green midvein; like gs2
v27	virescent	v*-590A	pale yellow to normal green
wlu2	white luteus	w1*-543A CHROHOSOME 8L	pale yellow seedling
v21	virescent	v*-25	light green seedling; greens first at leaf tip, margins, and midrib
wlu3	white luteus	w1# 203A CHROMOSOME 95	pale yellow seedling
v28	virescent	v#-27	pale yellow green to pale green
		CHROMOSOME 9L	(T)
wlu4	white luteus	w1*-41A CHROMOSOME 10S	pale yellow seedling
g121	glossy	g1*-478B	glossy seedling
119	luteus	1*-425 CHROMOSOME 10L	yellow seedling;
113	luteus	1*-59A	yellow seedling
v29	virescent	v#-418	light green with grainy appearance

chromosome arm. From this group those with no counterpart on the same arm among the current gene list have now been given a name and symbol. These are listed by chromosome arm with a brief description where appropriate.

M.G. Neuffer and J.B. Beckett

Designation of new dominant mutants

We have tested many dominant mutants for location to chromosome using the waxy translocation set. These are listed here by chromosome with gene symbol, name, and original temporary laboratory symbol and number.

Gene Symbol	Name	Lab Symbol CHROMOSOME 15	Description
Les2	leston	Les ⁿ -845A	tiny white necrotic spots
Les5	lesion	Les* 1449 CHROMOSOME 11	like Les2, 20 cm srl
Lea7	lesion	Lest-1461	many tiny yellow chlorotic
Macl	mosaic	Mack-791A	aleurone mosaic
Tlrl	tillered	T1r*-1590 CHROMOSOME 2S	hetorozygote has extra tillers
Lesi	lesion	Les*-843	large necrotic lesions beginning at 2-leaf stage
Les4	lesion	CHROMOSOME 2L Les*-1375 CHROMOSOME 3S	
Wrk1	wrinkled	Wr*-1020 CHROMOSOME 31	wrinkled small kernel
Spel	speckled	Spc [#] −1376	brownish speckles on lest bladenear flowering stage,
		CHRONOSOME AS	minflo and reaves rimp
Yskl	yellow streak	Ysk≄-844	yellowing of mid-vein areas, strong anthocyanin on leaf
		CURONOCOME AT	cip and margins
Ms41	male sterile	Ms*-1995	shrivelled anthers not extruded: (like msl)
		CHROMOSOME 55	
Mac2	mosaic	Msc*-11248	alcurone mosaic of colored and colorless with ACR
Rgd2	ragged	Rgd#-1445	leaves marrow and distorted, extra tillers
		CHROMOSOME 5L	
Hsfl	hairy sheath striped	Hsf*-1595	excess hairs on sheath, leaf margins etc. Humozyogte has abnormal growth on leaf margins
Les9	lesion	CHRONOSOME 7 Les ^k -2008 CHRONOSOME 8	
Clti	clumped tassel	C1t ²⁻⁹⁸⁵	plant short, 1/2 normal height, tassel and ear with compressed spikelets
Bif1	barren 1n- fluorescence	B1f*-1440	few to most spikelets missing from ear and tassel
Sdw1	semldwarf	Sdw*-1592	3/4 normal height erect leaves

Gene Symbol	Name	Lab Symbol	Description
		CHROMOSOME 9	
Zb8 (was Atcl)	zebra	C1*-1443	yellow green crossbands, strong anthocyanin in leaf tip and blade
G6	golden	G*-1585	lighter yellowish sheath
Les8	lesion	Les*-2005 CHROMOSOME 10S	
Les6	lesion	Les#-1451 CHROMOSOME 10L	
Varl	virescent striped	Vsr0-1486	virescent seedling, greens to normal, with many white and yellow green stripes

M.G. Neuffer, D.A. Hoisington, and R. McK. Bird

Location of dominant golden sheath on chromosome 9S

Golden sheath, G6, was located on chromosome number 9 using the T wx series. The backcross data showed G Wx linkage for several translocations, as listed.

C 1585	BR	C PT	# P	1 MWx	NWx	Hwx	Nwx	1:1 CS	% CO	CS
** *** ** *****	11.000				1.10	10.04				
1-9c	S.48	L.22	8	39	10	8	23	24.42	23	0.32
1-9(4995)	L.19	S.20	8	B 27	13	18	30	7.90	35	U.24
1-9(8389)	L.74	L 13	6	5 34	15	4	13	12,13	29	0.31
2-9b	S.18	L.22	8	4 26	6	17	35	18.73	27	1.94
2-9d	1.83	127	90	38	14	7	31	26.23	23	0.89
3-9c	L.09	L.12	7	9 37	18	6	18	12.56	30	0.47
4-9g	S.27	L.27								
4-9(5657)	L.33	S.25								
4-96	L 90	1.29	11	9 44	18	22	35	13.87	34	1.22
5-9c	S.07	L.10	8	38	12	12	27	19.29	27	0.51
5-9a	L.69	S.17	10	5 25	26	18	36	6.02	42	3.36
6-9a	\$.79	L.40	184	5 71	21	18	78	64.67	21	0.47
6-95	L.10	S.37	20	63	31	36	71	22.34	33	0.01
7-9(4363)	.00	.00								
7-9a	163	\$.07	8	5 22	22	19	23	0.38	48	0.20
89d	L.09	S.16	8	7 34	18	10	25	11.35	32	0.35
8-9(6673)	L.35	\$.31	91	5 42	11	10	33	30.43	22	0.09
9-106	5.13	\$.40	10	5 31	16	18	40	13.13	32	0.11

The closest linkage was with T6-9a and T8-9(6673), with breakpoints at S.79, L.40 and L.09, S.16, respectively. Subsequent crosses of G Wx/g wx x g wx, in which no translocation was involved, gave 54 G Wx, 13 g Wx, 12 G wx, 60 g wx for a total of 25 crossovers among 139 progeny tested, for a map distance of 18 cM. Progeny from crosses of golden plants by B-A translocations TB-9Sb and TB-9Lc gave both golden and green hypoploids, and TB-9Lc hyperploids gave both golden and green plants; however, TB-9Sb hyperploids were all green, indicating that +/+/G6 is green and that G6 is located beyond the breakpoint of TB-9Sb. The above information places G6 on the short arm of 9, approximately 18 cM distal to wx.

M.G. Neuffer

Location of dominant male sterile on chromosome 4L

Male sterile, Ms41, was located on chromosome 4 using the T wx series. The backcross data listed show close MsWx linkage for T4-9b, less close for T4-9(5657) and very little for T4-9g. These data place Ms41 on the long arm near, and possibly distal to, the breakpoint of T4-9b.

Ma 1995	BRE	C PT	# P1	MWx	NWx	Mwx	Nwx	1:1 CS	% CU	CS
				-		1.0				
1-9c	S.48	L.22	103	24	28	24	27	0.48	50	0.47
1-9(4995)	L.19	S.20	109	28	27	23	31	1.20	46	0.46
1-9(8389)	L.74	L.13								
2-90	S.18	L.22	104	27	27	15	35	8.00	40	4.31
2-9d	L.83	L.27	156	35	49	26	46	7.89	48	7.67
3-9c	L.09	L.12	105	15	37	23	30	10.23	57	8.26
4-9g	S.27	L.27	88	23	22	22	21	0.05	50	0.05
4-9(5657)	L.33	S.25	78	29	19	.7	23	10.62	33	2.19
4-9b	L.90	L.29	100	45	3	1	51	84.83	4	1.22
5-9c	S.07	L.10	88	20	34	12	22	6.57	52	6.40
5-9a	L.69	S.17	129	33	31	27	38	1.92	45	0.62
6-9a	S.79	L.40	102	24	28	23	27	0.63	50	0.63
6-90	L.10	S.37	95	29	20	26	20	2.44	48	2,34
7-9(4363)	.00	.00	174	37	60	40	37	5.57	57	1.72
7-9a	L.63	S.07	103	21	27	18	37	7.31	44	5.76
8-9d	L.09	S 16	88	14	37	18	19	10.40	63	5.23
8 9(6673)	L.35	5.31	188	52	50	38	48	1.20	47	0.44
9-10b	S.13	\$.40	107	25	27	29	26	0.24	52	0.01

M.G. Neuffer

Chromosome 8 linkage studies

The accompanying tables contain linkage data for de^* -1386A with Bif1, pro1, v16, ms8 and j1. The data further support the order Bif1-pro1-v16-ms8-j1 (MNL 58:77). All listed tests are Repulsion Backcross type. All paired recombination values were determined by the maximum likelihood method.

INDIVIDU	AL TOTALS			
prol	ms8	31	de	TOTAL
61 (27.7%)	97 (44 1%)	101 (45.9%)	126 (57.3%)	220

RECOMBINATION CLASSES

Rgn	Geno	type				Totals	Expected
2							575
0	+	+	+	de	66		
	prol	ms8	11	+	35	123	119.2
1	prol	+	+	de	17		
	+	ms8	1:	+	40	57	58.0
2	prol	mo8	+	de	1		
	+	+	j 1	+	12	13	16.0
3	prol	ms8	11	de	5		
	+	+	+	+	з	3	11.3
1,2	+	msß	+	de	7		
	prol	+	j1	+	1	8	7.8
1.3	+	ms8	11	de	6		
	prol	+	+	+	0	6	5.5
2.3	+	+	11	de	2		
	prol	ms8	+	+	2	4	1.5
1.2.3	prol	+	11	de	0		
	+	Rem	1		1	1	0.7

PAIRED RECOMBINATION VALUES

prol		8am	0.3273	+/-	0.0316
prol	-	j1	0.3636	+/	0.0324
prol		de	0 3591	+/-	0 0323
ms8		11	0.1182	+/-	0.0218
ms8		de	0.1591	+/-	0.0247
j 1		de	0.0864	+/-	0.0189

INDIVIDU	AL TOTALS			
Blf	prol	v16	de	TOTAL
	Column 10	**** :=		1000
79	71	75	76	157
(50.3%)	(45.2%)	(47.8%)	(48.42)	

RECOMBINATION CLASSES

Rgn	Gen	otype				Totals	Expected
0	+	+	+	de	25		
	Bif	prol	v16	+	17	42	49.1
1	Bif	+	+	de	10		
	+	prol	v16	*	9	19	17.9
2	Bif	prol	+	de	22		
	+	+	v16	+	26	48	39.5
3	Bif	prol	v16	de	10		
	+	+	+	+	7	17	14 6
1,2	+	prol	+	de	4		
	BIF	+	v16	+	8	12	14.4
1.3	+	prol	v16	de	2		
	Bif	+	+	+	7	9	5.3
2,3	+	+	v16	de	3		
	Bit	prol	+	+	5	8	11.8
1 2,3	Bif	+	v16	de	0		
	+	prul	+	+	2	2	4.3

PAIRED RECOMBINATION VALUES

 prol	0.2675	+/-	0.0353
 v16	0.5350	+/-	0.0398
 de	0.5478	+/-	0.0397
 v16	0.4459	+/-	0.0397
 de	0.5478	+/-	0.0397
 de	0.2293	+/-	0.0336
	prol v16 v16 de de	prol 0.2675 v16 0.5350 de 0.5478 v16 0.4459 de 0.5478 de 0.5478	prol 0.2675 +/- v16 0.5350 +/- de 0.5478 +/- v16 0.4459 +/- de 0.5478 +/- de 0.2293 +/-

Dan J. England and M.G. Neuffer

Mutable cytochrome f/b6 mutant isolated in Spm background

We report the isolation of a mutable nuclear pale green recessive maize mutant, pg^* -m1998, from a line with autonomous Spm. Leaf chlorophyll fluorescence induction kinetics indicated that the mutant is blocked on the reducing side of photosystem II. Analysis of thylakoid polypeptides by lithium dodecylsulfate polyacrylamide electrophoresis, followed by sequential staining for heme and polypeptides, revealed that the mutant had greatly reduced amounts of a polypeptide that stained positively for heme and corresponded to cytochrome f (35-37 kD apparent molecular weight). No cytochrome b6 was detected by heme-staining. No other differences were noted in the polypeptide composition by these criteria.

Western blot analyses confirmed that the mutant had trace levels of cytochrome f and also showed that the mutant had reduced (50-70%) levels of subunit 4 and Rieske FeS polypeptide. We had no specific antisera for cytochrome b6. The antisera were kindly provided by W. Taylor, Berkeley, CA. Of the four polypeptides in the cytochrome f/b6 complex, only one, the Rieske FeS polypeptide, is nuclear encoded. Two nonallelic nuclear mutations (hcf2, hcf6) have been reported in maize that inhibit assembly of this complex (Metz et al., Plant Physiol. 73:452-459, 1983). We plan to test allelism of the new locus with hcf2 and hcf6. The recent cloning of the spinach structural gene for the pg*-m1998 Rieske FeS polypeptide should permit assessment of linkage with this locus (loci) if the maize and spinach gene(s) share adequate homology. Work is in progress to test whether $pg^*-m1998$ is under Spm control, and to ascertain whether the other heme protein of thylakoids, cytochrome b559, is affected by the mutation.

Leonard Rosenkrans, Mary Polacco and Craig Echt

Mof* is unmasked by two v24 mutations

We have been studying a locus that affects the assembly timing of the major chlorophyll protein complex, LHCII, an antenna complex for photosystem II. Previous work (MNL 60:44) has shown that inbred Mo17 carries an allele (Mof^* -1) that allows premature assembly of LHCII in v24-576 (previously designated v^* -576) material. A second allele, Mof^* -2, segregated in the original material segregating v24-576, and rendered LHCII assembly abnormally late. Heterozygous material, Mof^* -1 Mof^* -2, had apparently normal assembly timing of LHCII. The effect of Mof^* on LHCII assembly is only observed in virescent material and not in normal siblings.

To test whether $Mof^{*}-2$ is unmasked by other v24 alleles, the F2 progenies were examined for a cross between $V24 \ V24 \ Mof^{*}-1 \ Mof^{*}-2$ and $V24 \ v24-424 \ Mof^{*}-1 \ Mof^{*}-1$ (see accompanying figure for pedigree of parental genotypes and for information that substantiates genotype assignment; v24-424 was previously designated $v^{*}-424$). The original material segregating v24-424 has shown no evidence of the $Mof^{*}-2$ trait. Our backcrossing program for V24 alleles has until recently only involved Mo17 ($Mof^{*}-1 \ Mof^{*}-1$). Within each progeny segregating virescent seedlings, 16-25 v seedlings were tested for $Mof^{*}-1 \ or \ Mof^{*}-2$ by combined criteria of leaf chlorophyll induction kinetics and initial fluorescence yield (described

in MNL 60:44). Confirmation of the LHCII assembly timing with fluorescence was obtained for two progenies by analyses of thylakoid polypeptides. The data show that Mof^*-2 can also act on v24-424. Four of nine progenies segregated only v seedlings with early LHCII assembly $(Mof^*-1 \ Mof^*-1)$ while the remaining five segregated v seedlings with early, normal and late LHCII assembly $(Mof^*-1 \ Mof^*-2 \ selfed)$.

In progress: We are testing (1) whether Mof^* is linked to any *cab* loci that encode apo-proteins of LHCII, (2) whether Mof^* can affect timing of LHCII assembly of other v mutations (v, v3, v5, v12, v16), and (3) whether any inbred lines carry Mof^*-2 .

Mary Polacco

Inter-regional maize inbred evaluation report

Recently released maize inbred lines were evaluated in five maturity groups (Table 1) for agronomic characteris-

Table	1. Inbreds and	maturity	groups	in	the	inter-regional
maize	evaluation.					

1	CM105 *	A619 *	B73 *	C166 *	SC76 *
2	C0109 *	A632 *	Mo17 *	FR802W *	SC213 *
3	A561	885	N28Ht *	F8805W *	T232 *
4	A565	A634	868	Ga209	GT112RF
5	A666	A635	B75	Mo17	NC245
6	A671	A659	876	T145	NC248
7	ND100	A670	B77	T147	SC12
8	ND240	Mo42	B79	T151	SC43
9	ND241	AY499	B84	T153	SC55
10	ND245	NY562	Mo14W	T155	Mp496
11	ND246	NY378	Mo20W	T159	Tx601
12	ND300	NY821LERF	Mo40	T250	
13	ND301	NYD410	Mo42	T254	
14	ND376	NYRW3	N132	T256	
15	ND408	NYRW20	N139	T258	
16	ND474	NYRW23	N152	Ar258	
17	Pa326	Pa405	Oh509A	Ar262	
18	Pa329	FR19	Oh514	Ar266	
19	Pa373	CH9	Pa91	Tx29A	
20	Pa374	CH581-13	Pa762	Tx61M	
21	CK52	CH586-12	Pa871	Tx403	
22	CK54	CH591-36	Pa872	Tx5855	
23	CK69	CH592-46	FR16	Tx6252	
24	CK75	CH593-9	FR20		
25	CG11	CH605-11	FR21		
26	CG12	CH663-8	HEO		
27	CG13	B87	H84		
28	CG14	Ms 7 1	H93		
29	CG15	Ms75	H98		
30	CG16	Ms76	H100		
31	CG17	Ms 200	H102		
32	CG18	H95	H103		
33	CL1	H83			
34	Ms72	W64A *			
35	Ms74	W548			
36	W117Ht *	W552C			
37		W562			
38		W570			
39		CH753-4			
40		CH671-28			

· Check entry.

tics and reaction to various diseases and insects. Agronomic data reported include yield, stand, root lodging, stalk lodging, usable ears, plant height, ear height, grain moisture, days-to-tassel, days-to-silk, ear row number, ear length, ear diameter, 300-kernel weight, and stalk crushing strength. Disease reactions include bacterial wilts, ear rots, fungal leaf diseases and rusts, smuts, stalk rots, and viruses. Insect data includes reactions to first and second generations of the European corn borer, corn earworm, fall armyworm, and the southwestern corn borer.

The results have been published as Missouri Special Report no. 325 and should be a valuable reference for maize researchers who work with inbred lines. Copies can be ordered from Extension Publications, University of Missouri, 115 South Fifth Street, Columbia, MO 65211 at a postage paid cost of \$5 per copy. Be sure to indicate that you want SR325.

L.L. Darrah

CORVALLIS, OREGON Oregon State University

A modified slot blot technique for use with nylon membranes

In this report, we present refinements to a previously published technique for slot blotting, a method we have used for detecting and measuring quantitative polymorphisms in maize DNA sequences. We have found this technique to be useful for studying copy number variation of repeated sequences among various maize varieties (Rivin et al., Genetics 113:1009, 1986) and for examining very low copy numbers of Robertson's Mutator transposonhomologous sequences in non-Mutator maize lines (Chandler et al., Genetics 114:1007, 1986). A detailed protocol for the technique and data analysis has been published (Rivin, Meth. Enz. 188:75-86, 1986).

We have modified our procedure by adapting the method of Reed and Mann (NAR 13:7207, 1985) for Southern blotting onto positively charged nylon membranes. There are two major differences in the modified method: denatured DNA samples are not neutralized prior to loading onto the filters and baking filters in vacuo prior to hybridization is eliminated. These changes represent a great savings in time and ease of handling and the resulting blots give very sharp signals that are stronger than with the original method.

Modified slot blot method:

1. Preparation of the apparatus: The slot blot apparatus is soaked in a 0.4 M NaOH solution prior to use. A positively charged nylon filter (we use Genatran) is wetted in distilled water and then briefly rinsed in 0.4 M NaOH. The apparatus is assembled as described previously.

2. Preparation of DNA samples: The DNA samples to be loaded are denatured by adding NaOH to a final concentration of 0.2 M and heated at 95C for 2 minutes.

3. Loading samples: The denatured samples are cooled on ice and vortexed before loading into the slots. After the entire sample has blotted, the well is rinsed through with 200 microliters of 0.4 M NaOH.

4. Handling the filter: After the apparatus is disassembled, the membrane is soaked for 5 minutes in 5 X SSC. It is

then ready for prehybridization. The filters do not need to be baked. They can be stored after air drying.

Donna Hazelwood and Carol Rivin

Mutator-homologous sequences in normal lines and in somaclonal variants

Genetically stable maize lines and varieties have been shown to have sequences homologous to Robertson's Mutator transposons, including apparently intact transposon structures (Chandler et al., Genetics 114:1007, 1986). We have found three kinds of Mu-homologous sequences in normal maize: (1) Mu1 terminal sequences not associated with internal sequences, (2) "endogenous elements"structures very similar to Mu1 and Mu2 (also known as Mu1.7) are found in many, but not all normal maize lines we have examined, and (3) "endogenous sequences"-a sequence similar to an internal sequence of Mu2 is found in every maize line we have checked. We have also found it in teosinte, Zea diploperennis and Zea mexicana samples. Both endogenous elements and sequences appear to be very stable in normal genetic backgrounds. We have found no differences in genomic restriction patterns among individuals of the line W22 (which carries a Mu2-like element as well as the endogenous sequence) or between W23 and the Golden Glow population from which it was derived.

The "endogenous sequence" from W23 has been cloned and sequenced. It is highly homologous to Mu2, but it has no Mu termini and is missing 401 bp of internal sequence. It does not have a transposable element structure. In all maize lines and relatives examined, the endogenous sequence is flanked by the same non-Mutator sequence. The endogenous sequence has been mapped to chromosome 2 (T. Helentjaris, pers. comm.).

We are interested in the possibility that cryptic transposons may become activated during growth in tissue culture or during regeneration and lead to the production of new phenotypes or somaclonal variants. To investigate this possibility, we have examined the Mu-homologous sequences in the inbred line W182BN and in eleven somaclonal variants that were derived from it. Both the inbred and the somaclones were given to us by Elizabeth Earle.

DNA from these sources was cut with a variety of restriction enzymes, electrophoresed in adjacent lanes of agarose gels and Southern blotted. The blots were probed with clones from internal and terminal portions of Mu1 (see Chandler et al., 1986) and with an internal sequence unique to Mu2. The latter clone was given to us by Loverine Taylor. We found that W182BN carries a sequence with a structure like Mu2 and two different endogenous sequences. These two sequences differ in their degree of homology to Mu2, but they are each flanked on one side by the same non-Mutator sequence.

When the DNA samples are cut by enzymes that cleave inside the Mu-homologous regions of the three sequences, we see no difference between the inbred lines and the somaclonal derivatives, indicating that tissue culture and regeneration has not changed the structure or the DNA modification pattern of these sequences. However, when cut with restriction enzymes that cut outside Muhomologous regions, one of the somaclonal lines shows the loss of a restriction band and the gain of a new band. One of the endogenous sequences rather than the intact Mu2-like sequence appears to be involved in this rearrangement. We are continuing to map this change to determine what kind of rearrangement has occurred in this somaclone and what role the Mu-homologous sequence may have played in creating it.

> Carol Rivin, Chee Harn, Vicki Chandler¹ and Luther Talbert¹ ¹University of Oregon

ABA and a developmental switch in embryogeny

Developing maize embryos have the capacity to either mature or germinate. Many lines of evidence point to the hormone abscisic acid (ABA) as playing an important role in directing the embryo into maturation. We have been examining embryo maturation and germination in wildtype maize and in viviparous mutants both in planta and in culture to try to dissect the regulatory pathways of this developmental switch and to learn how ABA may control them. We have looked at the polypeptides produced at various stages of embryo development and correlated the appearance of these with the changing levels of embryo ABA. We have also cultured dissected embryos on medium with or without ABA and looked at the polypeptides produced at various stages.

Figure 1. Germination index for embryos of the wild type lines W22 and Gaspé Flint. The embryos were dissected from ears harvested at the indicated days after pollination and then placed in a nutrient medium containing no hormones for five days. The germination index is a weighted value of % embryos germinating on each day in culture. It is large when embryos germinate quickly. W22 embryos at 18-25 days show a lag time in culture before germinating. Very few Gaspé Flint embryos 20-35 DAP germinate at all in five days of culturing.

We have found ABA regulated proteins in wildtype maize are first apparent about 18 days after pollination (DAP) (stage 3), a stage when embryo ABA levels become quite high. Synthesis of these proteins can be stimulated in embryos as young as 10 DAP (stage 2) by culturing on 10⁻⁵ M ABA. The mutants *vp2* and *vp5* do not synthesize normal levels of embryo ABA nor do they accumulate these maturation proteins. These mutants germinate precociously on the ear. If cultured with ABA, however, they are inhibited from germinating and the normal spectrum of maturation polypeptides is produced.

When developing embryos are cultured without ABA, they germinate within a few days. The rate of germination varies during early and mid-development. W22 embryos dissected out 18 to 25 DAP and cultured without ABA show a lag of a few days before they stop making maturation proteins and begin to germinate, although the ABA content of these embryos drops very quickly in culture. As shown in Figure 1, embryos of the variety Gaspé Flint behave very differently. At about 18 DAP the germination rate also drops in these embryos, in fact it becomes practically zero, but they do not regain the capacity to germinate precociously until about 40 DAP, long after the endogenous ABA level has declined. If these embryos are prematurely dried and reimbibed, however, they germinate quite synchronously within 24 hours.

The non-germinating embryos of Gaspé Flint are actively synthesizing the proteins characteristic of matu-

Figure 2. Gaspé Flint embryos dissected at 25 and 30 days after pollination (DAP) were initially labelled for 6 hours with ³H-leucine or were labelled after culturing 5 days in basal media with or without 10⁻⁵ M ABA. Lanes A-D, 25 DAP; E-H, 30 DAP.

- A, E: labelled after dessication.
- B, F: basal media without hormones embryos germinating after 5 days in culture.
- C, G: basal media without hormones embryos not germinating after 5 days in culture. D, H: basal media with 10⁻⁵ M ABA.
- Ŀ protein standards.

Fluorography shows that synthesis, as well as accumulation, of proteins marked with arrows is similar in lanes C and D and in lanes G and H.

ration phase, although the level of ABA in these embryos is negligible. Addition of ABA to the medium does not cause any change in the accumulation of these proteins (Figure 2). It appears that in W22 embryos the induction of maturation proteins and the inhibition of germination caused by ABA is lost quickly when the hormone is removed, but in Gaspé Flint embryos the developmental program initiated by ABA may be stable for a very long period of time.

Chris Holmes-Baker, Timothy Grudt and Carol Rivin

FREIBURG, WEST GERMANY University of Freiburg

Binding of nuclear factors to upstream regions of zein genes

The tissue and developmental specific expression of zein genes is highly regulated. It can be assumed that at least part of this regulation is achieved by *trans*-acting factors. This assumption is supported by genetic data with mutants such as opaque that affect zein protein production.

In this context we have started to look for the specific interactions of nuclear proteins with sequences lying upstream of cloned zein genes. In the case of pMS1, a clone containing a gene coding for a 19,000 dalton protein, we have shown by nitrocellulose filter binding and gel retention techniques several specific binding sites (see scheme). We have characterized one of these sites (at position -300) by footprint analysis and have shown a 22 bp protein binding site, which contained a 15 bp sequence that is found in all zein genes analyzed so far. Interestingly, this binding site can only be seen with nuclear extracts from endosperm tissue where the zein genes are specifically expressed. The other potential binding sites are being further characterized.

Scheme: Flanking sequence of pMS1 (see MNL 58:88-89, 1984). The open triangle points to the binding site at -300 and the closed triangles point to further uncharacterized binding sites.

We conclude that the extensive flanking regions of zein genes are important for the regulation of the zein gene system, and more specifically for the interaction with the gene products of regulatory genes.

The first part of this work will be published in the January issue of the EMBO Journal.

U. Maier, J.W.S. Brown and G. Feix

GAINESVILLE, FLORIDA University of Florida and USDA-ARS

On gene symbolization for the second sucrose synthase enzyme

Two sucrose synthase (SS) isozymes in maize have been known for the past several years (Chourey and Nelson, Biochem. Genet. 14:1041, 1976, and Genetics 91:317, 1979). The *Sh*-locus-encoded enzyme is unique with respect to its abundant levels in the *Sh* endosperm. The genetic basis for the second sucrose synthase isozyme, which was first uncovered through the analysis of sh mutants, was however not firmly established initially. Although a hypothesis that the second enzyme is due to a second gene (i.e., non-allelic to Sh) was favoured, an alternative idea that it was due to leaky expression of the sh allele in sh genotype could not be ruled out unequivocally. In this regard, the SS analyses of the shdeletion strain $(sh \ bz - m4)$ were guite useful, since the deletion stock proved to be similar to several spontaneous sh mutants, providing the first conclusive evidence that a second SS gene was present in the maize genome (Chourey, MGG 184:372, 1981). In addition, it was also possible to demonstrate reproducibly that there were two SS proteins in Sh endosperm, thus demonstrating that both genes are expressed in homozygous Sh endosperm (MGG 184:372, 1981). McCormick et al. (MGG 187:494, 1982) showed molecular similarity between the two SS encoding genes. Although no formal attempt was made to name the second gene, the most obvious and practical symbol, Sucrose synthase 2 (Ss2) for the gene and SS2 for its enzyme, have been used in the past several publications originating from this laboratory on the implicit assumption that the Sh encodes the SS1 enzyme. During the 1981-1986 period, at least 4-5 presentations on various aspects of the Ss2 gene have also been made at the Annual Maize Genetics meetings. Interestingly, no concerns or comments to express change in the Ss2 symbol were raised at these meetings, the best possible forum for the discussion of such matters. A recent publication, however (McCarty et al., PNAS 83:9099, 1986), uses an entirely new name, constitutive sucrose synthase (Css), instead of the previous designation, Ss2. A casual rejection of the Ss2 symbol is surprisingly uncorroborated by any statements to justify the action. Ironically, McCarty et al. used the Ss2 symbol to discuss the present data at the 29th Maize Genetics meetings (1986). The main intent of this communication is to point out that the Css symbol for the Ss2 gene is inappropriate for the following reasons:

(1) Ss2 expression, in contrast to McCarty et al.'s claim, is not constitutive in maize plants. Although the statement is made that "Css protein has been found in all maize tissues so far studied", (my underlining), an assertion of such critical importance is surprisingly unsubstantiated either by data or by reference to previous publications. This information is critical, since a previous extensive study of starch synthesis enzymes in endosperm and pollen has detected no SS activity in mature or immature pollen (Bryce and Nelson, Plant Phys. 63:312, 1979). I have similarly not detected any SS activity in pollen derived from plants of Sh or sh genotype (unpubl. data). The Css symbol would thus need to specify the tissues where the gene is expressed constitutively.

(2) In principle, gene symbolization on the basis of regulatory properties is unprecedented in maize. Usually, one needs a name for the gene before it is analyzed. This may explain why some of the genes, particularly those which are better characterized for their regulatory properties (e.g., Adh1 and Adh2) than the SS encoding genes, are symbolized on a neutral basis such as the order of their discovery. Furthermore, I believe, we know very little about the regulatory properties of Sh and Ss2 at the present time and it is extremely premature to label one as

Css. The successful use of Western blot analysis on denaturing gels to examine SS specific proteins and the recovery of gene specific probes to analyze transcripts will, however, soon fulfill this deficiency. Neutral symbols such as Sh and Ss2 allow such analyses to be done independently of their regulatory properties.

(3) Traditionally, constitutive refers to some constant level of expression at the protein/enzyme level, although it could include expression at any point in the path of gene expression. The fact that one can now incisively analyze various steps in gene expression and define points of blockage, demands that greater care be taken in gene symbolization. It is entirely possible that Ss2 could be constitutive at the transcription level but highly regulated at the protein level (an on-going project in my lab). Indeed, SS2 protein as well as the enzyme levels in leaf tissue of one-week and nearly four-week-old seedlings of the *sh* genotype vary by more than an order of magnitude (unpubl. data); transcription analyses are presently in progress. The point is that the designation "constitutive" in gene symbolization, as in the case of the Css symbol, sets an undesirable precedent and appears ambiguous due to the lack of information regarding the level of analysis or specifically, the level at which the gene is constitutively expressed.

In summary, although gene symbolization for SS enzymes is a bit problematic due to certain unusual constraints (e.g., the Sh symbol cannot be changed to associate with the first of the two sucrose synthases - the SS1) the symbol Css makes matters worse. The most important consideration, however, is that Ss2 expression in the maize plant is not constitutive, and thus the usage of Cssis technically incorrect and highly misleading.

Prem Chourey

Cloning, immunoselection and characterization of cDNA clones of the two non-allelic sucrose synthase genes

cDNA clones of the two non-allelic sucrose synthase (SS) genes, Ss2 and Sh, have been isolated from $\lambda gt11$ expression libraries derived from immature kernel poly(A)⁺ RNA of the sh bz-m4 (sh-deletion) and Sh/Sh genotypes respectively. Recombinant clones containing the longest Ss2 (λ shD13) and Sh (λ Sh9) cDNAs, each of approximately 2.5 kb size, were characterized and comparatively analysed. Proteins were analysed on polyacrylamide gels to identify the chimeric expression of the SS cDNAs fused to β -galactosidase gene in E. coli λ lysogens. The SS and β-galactosidase epitopes were recognized on Western blots using antisera against both proteins. Although the λ Sh9 expresses as a sucrose synthase-1 (SS1)-\beta-galactosidase fusion protein (~200 kD: 115 kD β-galactosidase and 92 kD SS) in λ lysogens, the λ shD13 failed to form such a chimeric protein and instead showed a ~70 kD SS2 polypeptide. Another Ss2 cDNA clone, AshD12, which is \sim 50 bp shorter at both ends than λ shD13, also did not form any fusion protein and only ~70 kD SS2 polypeptide could be seen. The reason for the lack of fusion protein in λ shD13 and λ shD12 lysogens is not known.

The following evidence indicates that the clone pshD13($\lambda shD13$ cDNA insert subcloned in pUC19) contains the Ss2 cDNA sequence: 1. The pshD13 was immunoselected from the cDNA expression library of the sh bz-m4 stock which is known to have a deletion at the Sh locus (Burr and Burr, Genetics 98:143, 1981; Dooner, CSHS Quant. Biol. 45:457, 1981). The residual activity in the endosperm of this genotype is due to the Ss2 locus (Chourey, MGG 184:372, 1981). 2. The pshD13 hybridized to endosperm $poly(A)^+$ RNA of the sh-deletion genotype as a single sharp band (~2900 b) which is also present in the Sh genotype. A second weak hybridizing band in the Sh genotype (2750 b) is considered due to cross-homology with Sh transcript as it comigrates with the band seen in the Sh poly(A)⁺ RNA using Sh cDNA as a probe. 3. pshD13 showed homology to the restriction fragments of Sh cDNA and Sh genomic clone (Werr et al., EMBO J. 4:1373, 1985). 4. An identical pattern of hybridization was observed when pshD13 was used as a probe on different restriction enzyme digests of sh-deletion and Sh genomic DNA. One such 6.3 kb BamHI hybridizing fragment cloned in EMBL4 from the sh-deletion stock, pGshD6, also showed different enzyme cleavage sites (Fig. 1) as compared to 16.3 kb BamHI Sh genomic clone (Werr et al., EMBO J. 4:1373, 1985).

Restriction enzyme cleavage site maps of sucrose synthase cDNA clones, pshD13 and pSh9 and of the Ss2 genomic clone, pGshD6. The line drawings below pGshD6 map show additional restriction enzyme sites on pGshD6. A solid bar shows the region which hybridizes to pshD13 and pSh9.

The pSh9 (λ Sh9 cDNA insert subcloned in pUC19) can be characterized as Sh cDNA clone by the following criteria: 1. It did not hybridize to poly(A)⁺ RNA of the *sh*-deletion genotype at the *Sh* transcript position. 2. pSh9 did not hybridize to genomic DNA from the *sh*deletion strain at the *Sh* position. 3. pSh9 contains the expected restriction sites of the *Sh* cDNA (Werr et al., EMBO J. 4:1373, 1985). 4. It shows homology to *Ss2* cDNA.

The restriction enzyme cleavage site maps of pSh9 and pshD13 are very different (Fig. 1). There are unique restriction sites in both clones, i.e., *Nci*I in pshD13 and *Pvu*II, *Cla*I, and *Bgl*I in pSh9. Among the common restriction sites, the *Sst*I and *Bgl*II are also located \sim 550 bp apart in *Sst*I-*Bgl*II fragments of the two cDNAs. Southern cross-hybridization studies also revealed more homology around this region based on the intensity of hybridizing fragments. The sequences 5' to SstI restriction site on two cDNA clones are diverged.

Genetic mapping analysis using the first Ss2-null mutant isolated among the Sh-revertants upon Ds excision from sh-m5933 allele indicates a tight linkage between Sh and Ss2 on chromosome nine (Chourey et al., CSH meeting p. 65, 1986; and Chourey et al., manuscript in preparation). The recent molecular mapping data, obtained in collaboration with Ben Burr (Brookhaven Lab) using B-A translocation stocks and the Ss2 cDNA clone (pshD13) as a probe, suggest that the Ss2 locus is close to the bronze (bz) locus on chromosome nine (Gupta et al., manuscript in preparation).

M. Gupta, P.S. Chourey and P.E. Still Transcriptional analysis of the mitochondrial gene URF13-T in T cytoplasm

The unique mitochondrial gene, URF13-T, in Texas male-sterile cytoplasm maize, has a complex transcriptional pattern. This is related to its association with a repeated region which is 5' to both URF13-T and *atp6*, and to processing of the transcripts (Dewey et al., Cell 44:439, 1986). By using small DNA probes (31-630 bp), we have Northern-walked from a region -1215 through the coding region of URF13-T and a co-transcribed gene, ORF25. The first five probes also represent a region of -1590 to -444 5' to *atp6*. Other *atp6*-specific probes were used to cover the remaining 5' region and the coding region for this gene.

The majority of the transcripts for both *atp6* and URF13-T appear to initiate within the repeated region and undergo RNA processing events. No differences were detected in the transcript pattern between sterile and restored lines using atp6-specific probes, however, differences between N and T cytoplasms were seen. A unique transcript of 1.55 kb occurred in T cytoplasms from five different nuclear backgrounds. This transcript may be related to differences in DNA sequence seen between -580 and -562 of atp6. There are two small insertions in T, of 4 and 5 base pairs, at -580 to -577 and -566 to -562, respectively, relative to the sequence in N cytoplasms. One insertion disrupts an AluI restriction site, allowing for an easy assay of many genotypes. The insert(s) is present in all T cytoplasms surveyed and absent in all N, C, and S cytoplasms we have examined.

The effect of dominant nuclear restorer genes on URF13-T has been described by Dewey et al. as differential processing of transcripts, seen with a probe representing the region +21 to +41. We find that a differential effect of restorers is detected on transcripts using a probe within the repeated region, representing positions -202 to -81 as well as in the region +2 to +200. The region from -80 to +4 is characteristic of an intron region, as a discrete transcript (1.6 kb) is missing from both T and T-restored mitochondria that is seen with flanking probes in T-restored mitochondria. A 1.5 kb transcript is seen in both T and T-restored mitochondria with probes covering the region +200 through the coding region. This transcript appears to be the result of an RNA processing event, whereas the 1.6 kb transcript could be the result of RNA splicing, which is unique to T-restored mitochondria. The current model to explain the effect of the nuclear restorer genes on the expression of URF13-T is that splicing and processing of larger transcripts (2.0 and 1.8 kb) decrease their relative copy number, lowering the effective number of transcripts that could encode the entire open reading frame of URF13-T. Antisera to this gene have detected a protein of Mr 13,000 which is unique to T cytoplasms (Wise et al., MNL, this volume). Synthesis of this protein is reduced in T-restored mitochondria (Forde and Leaver, Proc. Natl. Acad. Sci. 77: 418, 1980).

John C. Kennell, Roger P. Wise and Daryl R. Pring

Genomic configurations of T, Wf9(N), and A188(N) mtDNAs adjacent to URF13-T

Several major mtDNA rearrangements characterize the genomic configurations that distinguish N cytoplasms from T cytoplasms. One rearrangement is the duplication of ca. 5 kb of a single copy region of N cytoplasm mtDNA which is 5' to the gene atp6 (Dewey et al., Cell 44:439, 1986; Wise et al., Proc. Natl. Acad. Sci., submitted). The duplicated region in T places the atp6 transcription start signals 5' to URF13-T and ORF25. To identify the presumed progenitor region in Wf9(N) mtDNA contiguous to the repeated region of Wf9(T), a 1.7 kb BamHI clone, representing the left junction fragment of the repeat in T, was used as probe on SstII, SmaI, and XhoI digests of Wf9(N) and A188(N) mtDNAs, and mapped by the coordinate map of Lonsdale et al. (MNL 60:170). A 14 kb XhoI fragment left of the repeat in T was also used as a probe. Sequences of the two clones mapped to approximate coordinates 231-244. Thus the unique configuration of contiguous T sequences includes regions which are 240 kb apart on the Wf9(N) map. Interestingly, the 5 kb repeat and the adjacent sequences in T are very close to the recombinationally active 5.2 kb repeats of N cytoplasm; the 244 coordinate is within 2 kb of the N repeat, and the right edge of the 5 kb repeat of T is within 8 kb of the second copy of the N repeat. The 14 kb clone contained sequences which are represented in two regions of N cytoplasm. A188(N) and Wf9(N) mtDNAs were distinguishable with both the 1.7 and 14 kb clones.

Sequences adjacent to ORF25 vary within N cytoplasms, and we have found that A188(N) is more similar to T than is Wf9(N) in this region. Fifteen probes, covering ca. 11 kb from T cytoplasm, were hybridized to digests of Wf9(T), Wf9(N), A188(T), and A188(N) mtDNAs, using at least three endonucleases. A188(N) is colinear with T from within ORF25 to more than 3.5 kb 3' to the gene. This region appears to be repeated in T cytoplasm. In contrast, at least 3.5 kb of sequences adjacent to ORF25 were not present in Wf9(N) mtDNA. At least part of this sequence is transcribed in T and A188(N). The colinear region of T and A188(N) diverged within a 1.16 kb HindIII-XhoI fragment at the right hand end of the 6.7 kb XhoI fragment. It is apparent that A188(N) and T cytoplasm mtDNAs share genomic configuration through this region, and that Wf9(N) is clearly divergent. The data do not imply that A188(N) can be considered as a progenitor to T, but it is evident that Wf9(N) does not carry sequences which are represented and transcribed in A188(N) and T. It is interesting to note that A188(N) and T also share the 2.1 kb minilinear DNA, while Wf9(N) has a larger 2.3 kb counterpart.

> John C. Kennell, Torbert R. Rocheford, Roger P. Wise and Daryl R. Pring

GAINESVILLE, FLORIDA University of Florida and USDA-ARS ST. PAUL, MINNESOTA University of Minnesota

URF13-T codes for a 13kd polypeptide

A 345 bp open reading frame of T cytoplasm mtDNA codes for a predicted polypeptide of 13 kd (Dewey et al., Cell 44:439, 1986). A polypeptide of this size is produced by amino acid incorporation by isolated T mitochondria (Forde and Leaver, Proc. Natl. Acad. Sci. 77:418, 1980). Plants regenerated from callus tissue culture of T cytoplasm, exhibiting male fertility and resistance to the toxins of race T of Cochliobolus heterostrophus (Bipolaris maydis) (Gengenbach et al., Proc. Natl. Acad. Sci. 74:5113, 1977), have this gene deleted, or in the case of a mutant designated T-4, the gene has a G to A transition adjacent to a 5 bp insertion (Wise et al., MNL 60:63, 1986; Proc. Natl. Acad. Sci., submitted). This insertion event places a TGA stop codon in frame 4 bp from the insertion, truncating the predicted polypeptide at 8.3 kd. Transcription of this region is unaltered in the T-4 mutant compared to T cytoplasm, suggesting that T-4 may synthesize an 8.3 kd polypeptide. ³⁵S-methionine incorporation by isolated mitochondria showed that T synthesized a prominent 13 kd polypeptide, which was absent in N, T-4, or T-7 (a deletion mutant). A unique polypeptide migrating at approximately 8 kd was synthesized by T-4. A highly immunogenic region of URF13-T was selected for the synthesis of a 17 amino acid polypeptide, designated PEP17. Polyspecific antibody to PEP17 was raised, and immunoprecipitation of native polypeptides from mitochondrial amino acid incorporation revealed precipitation of the 13 kd polypeptide, indicating that it is a gene product of URF13-T. A polypeptide of approximately 7.2 kd, similar to the size of a polypeptide identified as subunit 9 of ATPase, was also precipitated by the antibody from mitochondria of T but not T-7 or N, suggesting that the 13 kd protein may be part of a complex with the *atp9* product.

> Roger P. Wise, Albert E. Fliss, Jr., Daryl R. Pring and Burle G. Gengenbach

HYDERABAD, INDIA Osmania University

Characterization of accumulated compounds in recessive *r*-*r*

Earlier studies with single and double recessive mutants of anthocyanin biosynthesis have led to the elucidation of specific roles of the genes in the gene action sequence analysed by Reddy and Coe (1962). From aleurone extracts of r-r one of the isolated compounds gave red color with concentrated H₂SO₄ as for a chalcone, and pinkish with alcoholic FeCl₃ as for presence of a phenolic hydroxyl group. Under the UV light the spot showed yellow fluorescence. The UV data in MeOH, showing λ_{max} 239sh (log E 4.18), 266 (log E 3.99), 319sh (log E 4.20), 379 (log E 4.44), suggested the characteristics of a chalcone. These observations were further confirmed by co-paper chromatography, superimposable UV and IR with an authentic sample of 2', 4', 3,4-tetrahydroxy chalcone (butein). Based on the preliminary data it was concluded that the isolated compound was butein.

Another compound from the same extract gave positive orange color for presence of the flavonoid skeleton with the Shinoda test, and dark coloration with alcoholic FeCl₃ for a phenolic hydroxyl group; under the UV light the spot showed yellow fluorescence. The UV data in MeOH, 248 (log E 4.30), 262sh (log E 4.14), 307sh (log E 4.15), 319 (log E 4.24), 362 (log E 4.43), suggested the characteristics of a flavonol. These observations were further confirmed by co-paper chromatography and superimposable UV and IR with an authentic sample of 3,7,3',4' tetra hydroxy flavonol (fisetin). Based on the data it was concluded that the isolated compound was fisetin. Based on the results that recessive c2 accumulates a C9 compound and the present observation that recessive r-r accumulates C15 compounds, chalcone and flavonol, further confirm the position of Rafter C2 in the gene action sequence. These observations have provided insight into the control of specific geneproduct relationships and also the position of genes in the control of anthocyanin biosynthesis in maize.

V. Satyanarayana and G.M. Reddy

The analysis of aleurone protein patterns of C-I and pigment inhibition

The soluble aleurone proteins were analyzed by disc gel electrophoresis to study the protein patterns of C-I, Pr, pr, bz1, bz2 and their F1s. A total of 17 bands were observed in all genotypes. The extracts of C-I exhibited 12 bands, Pr, 11; pr, 13; bz1, 10; bz2, 13. Band-5 (Rm 0.23), which was present in C-I, was absent in all the parents, suggesting that this band may be associated with the inhibition of pigment. All the F1s exhibited a characteristic banding pattern with five common bands, 3 (Rm 0.16), 5 (Rm 0.23), 8 (Rm 0.40), 13 (Rm 0.65) and 15 (Rm 0.78). In all the F1s a specific protein band of C-I, i.e. band-5, was present with Rm 0.23. It may be suggested that this band may be associated in the control of precursors/substrates required by other genes for anthocyanin biosynthesis in the aleurone tissue of maize.

K.V. Rao, P. Suprasanna and G.M. Reddy

Initiation and maintenance of suspension cultures

Friable calli derived from seedling roots of three genetic stocks, A188 Pr and r-r, were transferred into liquid MS basal media containing 0.5-4 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and 2,4,5-trichloropropionic acid (2,4,5-P) to establish fine cell suspensions for studying growth rate and effect of hormones and genotypes. After a week, the suspension mostly consisted of cell aggregates (2mm) and few single cells (5-10%). Of the four concentrations of 2,4-D tested, 2 mg/l exhibited good separation of the callus mass into fine suspensions of small aggregates and single cells (20-40%); whereas the degree of separation was less in other concentrations as seen by larger aggregates (2mm) and frequency of single cells was low (4-5%). The two analogues of 2,4-D, i.e. 2,4,5-T and 2,4,5-P, were not effective in inducing a fine suspension compared to 2,4-D as evidenced by fresh weights (128, 10.2 and 20.1 mg) and dry weights (15.5, 2.3 and 4.31 mg). Differences were observed, however, in the size of cell aggregates. 2,4,5-P was found to be superior over 2,4,5-T in having small cell aggregates (2-4%) whereas in the former, only aggregates were observed. Larger aggregates had revealed loosely

connected smaller cells. The cells were of mostly parenchymatous type and revealed cytoplasmic strands. As subculture proceeded, the rounded cells predominated and formed into aggregates, whereas the elongated cells remained undivided, suggesting association of cell types in differentiation. A188 exhibited good cell suspension compared to other genotypes.

P. Suprasanna, K.V. Rao and G.M. Reddy

ITHACA, NEW YORK Cornell University

In vitro selection for methomyl resistance in cms-T

The carbamate insecticide Lannate (active ingredient methomyl) mimics the cytoplasm-specific action of *Helminthosporium maydis* race T toxin (HmT toxin) on cms-T plants (Humaydan and Scott, Hort. Sci. 12:312, 1977) and isolated mitochondria (Koeppe and Malone, Science 201:1227, 1978). In vitro selection for resistance to *H. maydis* race T toxin has been successful (Brettell et al., Theor. Appl. Genet 58:55, 1980; Gengenbach et al., Proc. Nat. Acad. Sci. 74:5113, 1977), suggesting that methomyl may also be a useful selective agent. The chemical is more readily available than the purified fungal toxin and is also water soluble, making it convenient to use for in vitro selection. We obtained over 100 maize plants which were resistant to methomyl, and whose progeny also show resistance.

Callus was established from immature embryos derived from cms-T versions of the inbreds W182BN, P39, MDM-1, and of the F1 hybrids of SW-1, IL766A-1 and IL766A-2 with W182BN-N (a non-restoring pollen parent, used here to improve regeneration). All lines except W182BN are sweet maize. Embryos were obtained from fully male sterile plants except for IL766A-2 and MDM-1, which were either unrated or partially fertile. The maternal parents all show methomyl sensitivity regardless of fertility restoration.

Callus was increased over a period of 3 months before selection was initiated. Meanwhile, selection conditions were defined for different genotypes. Addition of 0.6 mM methomyl to modified Murashige-Skoog medium with 5mg/l 2,4-D, 4% sucrose caused about 20% inhibition of fresh weight increase for W182BN and W182BN x IL766A-2. Callus plated on 0.65mM methomyl showed intermediate inhibition of growth and on 0.7mM methomyl showed 80 to 100% inhibition. The other genotypes were cultured on Duncan's Medium D (Duncan et al., Planta 165:322, 1985). Inhibition of fresh weight increase on this medium containing 0.6mM, 0.65mM, or 0.7mM methomyl varied between 50 to 95%, depending on the genotype.

Over 2800 callus pieces were used in selection experiments, with half of these pieces serving as controls not exposed to methomyl. Callus which grew and remained regenerable in appearance was subcultured monthly on selection medium or, for the controls, on maintenance medium. Both gradual and high selective pressures with media containing methomyl were used. Regeneration was started after 3, 4, 5, 6, or 10 subcultures by transfer to MS medium with 10% sucrose and no 2,4-D; in some cases 1mM methomyl was included. Regenerated plantlets were tested for resistance to methomyl at the 3-5 leaf stage by direct swabbing of 0.3M methomyl onto the distal sections of a leaf. In this assay, leaf necrosis was visible after 1-3 days on the treated leaves of cms-T plants while no effects were seen on treated leaves of plants with other cytoplasms (N, C, S). Regenerants showing no necrosis were scored as resistant.

Presently, 288 plants regenerated after 3 to 5 selection. cycles have been examined. Of the regenerants from callus exposed to methomyl during subculture, 76% (117/153) showed methomyl resistance; of these, 97 plants were fully male-fertile, 16 had unrated or abnormal tassels, and 4 were male sterile. Only 2% (3/135) of the regenerated controls showed resistance: these were all derived from IL766A-2, which yielded the most control regenerants (100). Several fertile, methomyl sensitive regenerants have also been obtained from sterile starting material subcultured on methomyl. Almost all (40/41) plants regenerated in the presence of methomyl were resistant, while only 69% (77/112) of the plants were resistant after regeneration in the absence of the insecticide. Control callus was generally not capable of plant regeneration on medium containing methomyl. This suggests that high methomyl concentrations in the regeneration medium provide an effective roguing of sensitive material. The influence of time in culture, type of selection pressure, and of genotype on the proportion of resistant and sensitive plants is currently being examined.

The resistant plants varied in their response to injection of HmT toxin into the whorls. Of the 82 resistant plants examined, 39% showed little or no response to toxin and 61% showed intermediate to high sensitivity. The regenerated controls for the corresponding cultures showed 100% sensitivity. It is also interesting that gain in fresh weight of callus was not a clear indication of resistance. A resistant plant was obtained from material on methomyl which showed no weight increase during the last selection cycle before regeneration, and a mix of resistant and sensitive plants resulted from callus which grew even better on methomyl than healthy control tissue.

We are currently doing seed increases in the greenhouse and in the winter nursery in preparation for inheritance studies. Considering the results of the HmT toxin resistance work, it is likely that the shift to methomyl resistance and male-fertility involves alterations in the mitochondria. Progeny of resistant selections show resistance, both in seedling tests with methomyl and in fieldgrown material subjected to biweekly sprayings of Lannate.

The apparent link of methomyl resistance with malefertility (seen also in material selected for resistance to the HmT toxin) may limit the usefulness of such methomylresistant plants for hybrid seed production. However, selection for methomyl resistance offers a method for rapid cytotype conversion from male-sterile to male-fertile; it eliminates the need for repeated backcrosses after conventional fertility restoration. Also, methomyl resistance could be easily incorporated into lines where fertility changes are less important than the maintenance of specific cytoplasm-nuclear background combinations. One such example is T-Rf sweet corn. In addition, apparent differences in structural requirements and effective dosages of the toxin and insecticide leave open the possibility that different mechanisms of action may be involved. Molecular analysis of methomyl resistant mutants offers

distinct potential for providing additional understanding of the mitochondrial genomes and cytoplasmic male sterility.

A.R. Kuehnle and E.D. Earle

JOHNSTON, IOWA Pioneer Hi-bred International

Continued study of a defective WF9 cytoplasm, "wsp"

The *wsp* and related progenies described in MNL 60:69-70 were regrown in 1986. Nuclear/cytoplasmic interactions and segregation ratios were essentially the same as in 1985. Thus it appears that expression of the *wsp* phenotype, the result of a cytoplasmic/nuclear genetic interaction, is reasonably stable. Tables 1 and 2 summarize the two-year results among families (Table 1), and within those families that showed segregation (Table 2).

Table 1. Classification of families for presence of wsp phenotype, 1985 and 1986.

Pedigree	Cyt.	Family	%wsp,1985	%wsp,1986	
(SK2wsp x WF9)(8)	wsp	367198	6	7	
		367194	6	5	
(SK2 x WF9)(X)	SK2	367196	0	0.3	
		367192	1	0.3	
(SK2wsp x WF9)WF9	wsp	463091/90	32	22	
		463083/82	3	13	
(SK2 x WF9)WF9	SK2	463089/90	0	0	
		463081/82	0	0	
(SK2wsp x WF9)SK2	wsp	463087/86	0	0	
		463079/78	0	0	
(SK2 x WF9)SK2	SK2	463085/86	0	0	
		463077/78	0	0	
SK2wsp x WF9	wsp	367198/197	-	0	
SK2 x WF9	SK2	367196/197	-	0	
WF9	WF9	463090	19	27	
		463082	1	0	
SK2	SK2	463086	0	0	
		463078	0	0	

Table 2. Classification within families for wsp phenotype, 1985 and 1986.

Pedigree	Cyt.	Ear-row	%wsp,1985	&wsp,1986	
(SK2wsp x WF9)(x)	wsp	104	7	9	
		103	13	7	
		102	0	4	
		98	4	3	
		97	13	9	
		96	1	3	
(SK2wsp x WF9)WF9	wsp	90-A8	11	19	
		-A6	63	26	
		-7	21	24	
		-5	29	11	
		-3	38	27	
		82-A8	0	0	
		-A4	6	- :	
		-2	5	25	
		-1	5	7	
WF9	WF9	90-A8	0	0	
		-A6	44	56	
		-7	0	0	
		-5	0	0	
		-3	45	56	
		82-A8	4	0	
		-A4	0 -	0	
		-2	o	0	
		1	0	0	

Additionally, ear-rows were grown and observed of seed from open-pollinated ears borne on plants classified as *wsp* in the 1985 observation planting. Each ear-row generally contained several plants of *wsp* phenotype when its pedigree indicated *wsp* cytoplasm, but not when the pedigree indicated SK2 cytoplasm. When pedigrees indicated WF9 cytoplasm (all such ear-rows came from openpollinated ears of WF9) about half the ear-rows contained plants of *wsp* phenotype.

These results agree with the hypotheses that: (1) *wsp* is stably inherited through the seed parent, even after being hidden for many generations by a "repressor" nuclear genotype, (2) the small number of plants with SK2 cytoplasm that were classified as *wsp* in 1985 were probably misclassified, and (3) WF9 (in at least some progenies) is capable of producing new cytoplasmic defectives of *wsp* phenotype. Appropriate backcrosses have been initiated to facilitate study of the persistence and inheritance of the recovered *wsp* selections.

Work also continues to investigate the possibility that the *wsp* cytoplasmic genotype may be lost as well as created. To date, evidence indicates that once created, it persists, although its expression in uniform nuclear "expressor" genotypes is highly variable from plant to plant. One WF9 backcross ear-row (82-A8 in Table 2) has not yet shown any *wsp* plants in observations of about 40 plants; progeny from that ear-row will be further tested to see if the *wsp* cytoplasmic genotype is indeed gone, or only not yet expressed.

Donald N. Duvick

Defective cytoplasms from teosinte

B73 has been backcrossed as male into the cytoplasm of several accessions of most of the described races of teosinte, as well as of Z. diploperennis. Most of the backcross lines are phenotypically indistinguishable from B73 after 4 to 5 backcrosses have been made. But B73 in the cytoplasm of 2 accessions of Jutiapa teosinte, in an old accession of "florida" teosinte (probably Zea luxurians), and in a new accession of Z. luxurians is small and slow growing and shows poor ear and kernel development. Hybrids of these strains (used as seed parent) with other maize genotypes are also weak, late in maturity and have poor ear and kernel development. Interestingly, B73 in Z. diploperennis cytoplasm is not reduced in vigor; B73 backcross lines in diploperennis cytoplasm appear to be identical in vigor and maturity to B73 in its own cytoplasm.

Donald N. Duvick

Mapping the Css gene relative to the genes for Sh1and Wx

In the process of constructing a maize RFLP map, we have recently positioned the Css (sucrose synthase-2) gene relative to the genes for Sh1 and Wx1. We find that Cssmaps 32 ± 4 cM from Sh1 and 11 ± 2 cM from Wx1 (Figure 1). This location is in close agreement with that reported by McCarty et al. (MNL 60:60, 1986) using different RFLP markers and in a different F2 population.

Sh1	Wx1	Cas

Figure 1. The region of chromosome 9 containing the genes for Sh1, Wx1 and Css.

Our initial experiments were designed to assess polymorphism around these loci in our F2 population. We nick translated probes prepared from the BamHI insert from the Css clone p21.2 (McCarty et al., MNL 60:58, 1986), the EcoRI insert of the Sh1 clone p17.6 (Sheldon et al., MGG 190:421, 1983), and SalI subfragment #1 from the Wx1clone pWx5 (Wessler and Varagona, PNAS 82:4177, 1985) and hybridized them against DNAs isolated from the inbred parents B73 and Mo17 digested with various restriction enzymes. As expected, usable polymorphisms were found for each probe. Next, linkage data were obtained by hybridizing each probe to Southern blots containing DNAs from B73, Mo17, B73 x Mo17, and 112 F2 plants. F2 plants were scored as B73-like, Mo17-like, or F1-like for each probe. Map position was determined using the maximum likelihood method. Genetic distances observed were Sh1-Wx1 24 \pm 3 cM, Sh1-Css 32 \pm 4 cM, and Wx1-Css 11 ± 2 cM.

These mapping experiments demonstrate the utility of RFLPs in genetic studies. The chromosomal location of Css was determined even though no phenotypic mutant had been identified. In addition, we have shown that the F2 population B73 x Mo17)X is recombinationally equivalent to the one used by Helentjaris et al. (MNL 60:118, 1986), at least in this region. This finding should make it easier to correlate the RFLP maps derived in different laboratories.

Wendy Behrendsen, Debi Blair and David Grant

KRASNODAR, USSR

Krasnodar Research Institute of Agriculture

Kinetic parameters of RNA synthesis in isolated mitochondria of different genotypes

The analysis of mitochondrial RNA-synthesizing systems in different maize genotypes may be important for elucidation of the role of the mitochondrial genome in molecular-genetic mechanisms responsible for commercially essential traits of maize plants. In this connection it appears reasonable to investigate the kinetics of mtRNA synthesis by isolated mitochondria from maize plants differing in the level of adaptability. The mitochondria were isolated from 3-day-old etiolated maize seedlings by a standard method of differential centrifugation. Mitochondrial protein was determined by the Lowry method. The functional activity of the isolated mitochondria (rates of mitochondrial respiration in the 3d and 4th metabolic states, respiration control) was estimated during kinetic experiments by a polarographic method with a Clark electrode. The synthesis of mtRNA was registered with labelled ³H-UTP (specific radioactivity was 560 TBq·mol⁻¹). DNA-dependent mtRNA synthesis was determined by incorporation of labelled ribonucleosidetriphosphate into acid-insoluble mitochondrial material. The mtRNA synthesis was highly sensitive to specific inhibitors of mitochondrial transcription (ethidium bromide, actinomycin D). The kinetic data were obtained at least from 3-4 experiments.

The kinetics of mtRNA synthesis was registered within the first 30 minutes after mitochondrial isolation since it was possible to eliminate in these conditions the changes in mitochondrial genome activity following uncoupling of oxidation and phosphorylation as a result of organelle aging.

Depending on the rate of mtDNA transcription, two groups of inbreds may be identified (Fig.): 1, W64A and A344 +/+ inbreds showing a low rate of mtRNA synthesis in their mitochondria and 2, Sg25 inbred and dwarf mutant A344 sin/sin demonstrating a high level. The first group of inbreds had higher kernel yield than the second. The inbreds of the first group differed in ecological plasticity: the W64A inbred exhibited high plasticity while the A344 +/+ exhibited low plasticity. These inbreds showed relatively constant variation of the kernel yield in a wide range of environment. The yield potential of the Sg25 and induced mutant A344 sin/sin was genetically limited, i.e. the yield gain significantly decreased after reaching 25 q/ha level. Therefore, the high level of mtRNA synthesis may be assumed to result from inhibiting effect of nuclear genes. The Sg25 inbred with high general combining ability produced crosses of an extensive type (bi = 0.24, $s^2 di = 3.45$).

Figure. Kinetics of mtRNA synthesis in isolated mitochondria from A344 +/+ (O), A344 sin/sin (•), W64A (\Box), Sg25 (Δ) and W64A x Sg25 (X).

The W64A x Sg25 cross was intermediate according to a rate of mtDNA transcription. It showed: 1, low kernel yield potential, 2, high level of long-term mean kernel yield in rainfed conditions, 3, high stable ecological response (bi = 1.16, s²di = 4.9). For W64A x V158 and W64A x A344, bi was 1.24 and 0.35, s²di was 42.5 and 26.7, respectively.

We propose that the rate of mtDNA transcription is negatively associated with a genotype's ability to maintain the constant value of variation in the adaptation response to a wide range of environment.

> Yu.M. Konstantinov¹, G.N. Lutsenko¹, V.A. Podsosonny¹ and A.S. Mashnenkov

¹Siberian Inst. Plant Physiol. Biochem., Irkutsk

LINCOLN, NEBRASKA University of Nebraska

Evidence for transposable element activity in Nebraska Stiff Stalk Synthetic

I have crossed a number of lines to Nebraska Stiff Stalk Synthetic (NSSS) to obtain material which is better

adapted to the Nebraska environment. Among these lines were several stocks which were testers for transposable elements. NSSS was crossed as the female by lines carrying bz2-m or a-m-1 and two or three ears of the resultant F1 were selfed. The bz2-m allele could be followed by the bronze phenotype while the a-m-1 allele was followed by the linked sh2 marker. In the case of the *a*-*m*-1 allele, no dots or sectors of color were seen on shrunken kernels, indicating an absence of Spm activity. Only ears which were segregating 3:1 for colored, plump vs. colorless, shrunken kernels were considered. In the case of bz2-m, seven different crosses were done. The ears resulting from the self pollination of two of these crosses showed mutability of the bronze phenotype. The mutability is expressed as sectors and dots of color. This suggests the presence of an Ac like activity. With the small sample size, no conclusion can be drawn about the copy number of the element.

This Ac element could be resident in either the NSSS or the *bz2-m* line. In the first case, the cross to the tester served to indicate the presence of an active element while in the second case an active element was generated by outcrossing to the NSSS. Crosses with other Ds-induced alleles in different genetic backgrounds would be necessary to support one model over the other. It is possible that the Ac element is resident in the NSSS. Peterson and Salamini (Maydica 31:163, 1986) have shown the presence of the Uq and Mrh systems in Iowa Stiff Stalk Synthetic. Tests for the presence of five other transposable element systems failed to show any positive results but did not rule out the possibility that these elements existed in the material. NSSS, originally derived from Iowa Stiff Stalk Synthetic, is a composite of two sub-populations which were selected for high grain yield. The presence of an Ac element in this breeding population lends support to the idea that transposable elements provide diversity which can be used in selection.

John C. Osterman

LLAVALLOL, ARGENTINA Instituto Fitotécnico de Santa Catalina

New cytological evidences for a basic number x=5 in the genus Zea

In the last News Letter (MNL 60:77-79, 1986) we presented an introduction and discussion of our first results on cytological evidences for a basic number x = 5 in Zea. The same results were published afterwards in Theor. Appl. Genet., in press (1987). The aim of this article is to present new results that support this working hypothesis and add three new pieces in the puzzle of the x = 5 genomic relationship among taxa.

The new results consist of the analysis of the meiotic configurations of Zea mays ssp. mexicana and two F1 artificial interspecific hybrids (Z. mays ssp. mays x Z. mays ssp. mexicana, 2n = 20; Z. perennis x Z. mays ssp. mexicana, 2n = 30). In Table 1 the results of meiotic studies are detailed. Z. mays ssp. mexicana (2n = 20) and the F1 hybrid Z. mays ssp. mays x Z. mays ssp. mexicana (2n = 20), present a regular meiosis with the formation of 10 bivalents. In both tetraploid taxa secondary associations were found with means of 2.74 and 3.57 pairs of bivalents, respectively. In F1 hybrid Z. perennis x Z. mays ssp. mexicana (2n = 30) 5III + 5II + 5I were formed in ca. 47% of the 104 cells studied and the means were III=5.27, II=5.5 and I=4.58 (Table 1).

In Figure 1 the most frequent meiotic configurations are presented. Our previous results on other taxa, with the purpose of making an integration, are also included in the same figure.

In the 2n = 30 hybrid (Z.m.mx. x Z.per., Fig. 1) the 5III could be formed by autosyndetic pairing of A'₁ and A''₁ genomes from Z. perennis and by allosyndetic pairing with the A'₂ genome from Z. mays ssp. mexicana. The 5II could be formed by autosyndetic pairing between C₁ and C₂ homeologous genomes from Z. perennis. Finally the 5I

SPECIES		Diakinesis-metaphase configuration			Frequency	Secondary associations	N°		
or HYBRIDS	211	1	п	111	IV	- 10	quiasmata (X ±SE)	of bivalents (X ±SE)	of cells studied
Z.mays ssp.mexicana	20	-2	10 9	:	:	97.06 2.94	17.84 ±0.21	2.74±0.14	68
		x 0.059	9.97	-	-	-			
Z.mays ssp.mays x Z.mays ssp.mexicana	20	-2	10 9	-	-	90.77 9.23	16.12 ±0.41	3.57±0.14	65
		x 0.18	9.91	-	-	-			
<u>Z.perennis</u> x <u>Z.mays</u> ssp.mexicana	30	8 7 4 5	8 7 7 6 5	2 3 4 5 6		1.92 13.46 7.69 17.31 45.15			104
		2	2	8	-	0.96			
		x 5.269	5.5	4.576	-	70			

Table 1. Meiotic configuration in species and F₁ hybrids studied.

62

Figure 1. Chromosome numbers, most frequent meiotic configurations and hypothetical genomic constitution of species and hybrids of *Zea* assuming x = 5. The results presented here are surrounded with a broken line, the other ones were taken from Molina and Naranjo (MNL 60:78, 1986; Theor. Appl. Genet., 1987).

would belong to the B'_2 genome from Z. mays ssp. mexicana. As in the hybrids with 2n = 30 previously studied (Molina & Naranjo, 1987), in this new hybrid there is a tendency of A, C and B genome separation in meiotic metaphase I, with the trivalents, bivalents and univalents grouped respectively, as indicated.

The case for an allopolyploid origin of 2n = 20 taxa and autoallopolyploid origin of 2n = 40 taxon, seems strong (Fig. 1). Until this moment our results suggest a minimum of three distinct original genomes (A, B and C) in order to explain the genome constitution and the cytogenetic relationships among the four species studied.

Carlos A. Naranjo and Maria del Carmen Molina

LOMAS DE ZAMORA, ARGENTINA Lomas de Zamora University LLAVALLOL, ARGENTINA Instituto Fitotécnico de Santa Catalina

Early expression of heterosis in diploperennial teosinte-maize hybrids

While we were working with hybrids between diploperennial teosinte and maize, the fast and vigorous development of the hybrid plants in relation to their parents, especially diploperennial teosinte, really took our attention. The hybrids between maize and its wild relatives are generally heterotic in the extreme. Heterosis expresses itself through different morphological and physiological effects and it is especially related to the kind of maize used in the crossings.

Our observations let us realize that a simple experiment, carried through in an early stage, could probably be used to foretell the heterosis expressed in inter-specific hybrids. It flashed into our minds that the initial strength of the plants could be measured through different parameters of measurement to be able to associate them, in the future, with traits of the mature plants. We designed an experiment consisting in the breeding, under similar environmental conditions, of hybrids between Z. diploperennis and a sweet maize variety (Evergreen). Seeds of each participant (parents and hybrids) were germinated in flower pots. Measurements were made at 10, 15, 20, 25 and 30 days after planting for the three participants and on 80 individual plants (four repetitions) for each stage of development. During all the experiment, the flower pots were sprinkled with a nutrient solution. The traits measured in each stage of development were the following: shoot length (SL); root length (RL); shoot fresh weight (SFW) and dry weight (SDW), and root fresh weight (RFW) and dry weight (RDW). The results obtained are shown in Table 1.

At the beginning, maize has greater development than the others for the different traits studied. As the initial growth of the plant mainly depends on the weight of the original seed, it can be concluded that they agree with the experimental values obtained; the initial dry weight of the seeds is very different; diploperennial teosinte is only 55.1 mg, hybrids 78.7 mg and maize 176.1 mg.

These great initial differences give advantage to maize, and because of this it was considered inconvenient to express the results in such a way that they could be comparable. For the last column of Table 1, we therefore calculated the total dry weight increment (TDWI) on the base of the initial dry weight of the seeds. The value of TDWI, for each stage of development, is the result of subtracting from the total dry weight (shoot + root) the initial dry weight.

During the first half of the experiment the hybrid plants are as heavy as maize plants, and they have a greater content in dry matter. Afterwards, fresh weight and dry weight values are higher in hybrids than in maize. TDWI is always higher in hybrids, whatever stage we consider. This fact lets us deduce an upper efficiency in the elaboration of dry matter and a higher production rate, as

	Parent	SL	RL	SFW	RFW	SDW	RDW	TDWI
dap	or cross	(cm)	(cm)	(mg)	(mg)	(mg)	(mg)	(mg)
	Zd	5.3+0.7	15.5+2.6	71.7+19.2	201.2+29.4	9.2+0.9	53.8+2.3	7.9
10	Eg	14.4+0.5	36.1+1.1.	753,2+79,4	1790.7+60.7	64.8+4.4	115.7+7.5	3.8
	Zd x Eg	14.9+1.2	26.8+1.9	486.0+72.3	1062.3+138.4	55.4+9.8	72.6+3.8	49.3
	Zd	8.1+0.6	22.7+0.6	168.4+22.7	354.4+48.7	21.1+1.8	68.5+4.0	34.5
15	Eg	23.4+1.0	47.4+3.1	1376.7+101.8	2499.1+94.1	117.8+8.7	137.4+7.3	78.5
	Zd x Eg	23.1+2.9	39.6+3.3	1177.1+178.6	1690.9+172.1	123.6+14.4	107.1+16.4	152.0
	Zd	11.7+0.4	29.9+3.3	378.0+1.8	707.4+104.1	57.8+5.1	89.4+5.7	92.1
20	Eg	35.7+1.1	50.0+6.8	2687.5+123.7	3063.2+446.1	272.1+23.2	179.2+27.0	274.6
	Zd x Eg	35.1+4.2	47.0+6.7	2638.8+168.1	3361.5+243.7	289.0+23.5	198.7+20.3	409.0
	Zd	16.6+1.7	35.0+1.4	803.2+185.8	1119.5+171.4	102.1+27.4	127.0+16.1	174.0
25	Eg	49.5+2.4	60.8+5.1	4234.2+342.6	3030.3+449.8	415.5+40.6	226.0+42.0	464.8
	Zd x Eg	48.2+2.6	48.8+6.0	5360.4+1048.0	4459.4+504.7	586.8+87.6	380.0+41.2	888.1
	Zd	21:6+0.5	36.5+1.0	1071.2+42.3	1254.5+211.5	168.1+11.7	146.8+21.6	259.8
30	Eg	52.7+3.5	61.0+4.2	4824.5+657.1	3973.5+984.4	586.8+57.0	295.4+55.3	705.5
	Zd x Eg	55.2+4.8	50.0+2.3	5924.6+722.8	5752.5+1479.5	823.6+118.4	589.4+170.5	1334.3

Table 1. Seedling traits of Z. diploperennis (Zd), Evergreen maize (Eg) and hybrids (Zd x Eg) at different developmental stages (experimental results are expressed per seedling).

the initial dry weight of the hybrid seeds was less than 50 percent those of maize.

A remarkable fact is the slow growing of diploperennial teosinte, opposite to maize. In spite of it, heterosis comes out again when they greatly overcome the most vigorous parent. At the end of the experiment, hybrids almost make twice the amount of total dry weight per plant than maize. The results obtained have a special meaning for being clearly demonstrative of the wide possibilities that wild germplasm presents and which are possible to be used, to increase the biological efficiency of maize.

J.L. Magoja and I.G. Palacios

Effect of perennial teosinte introgression on maize tassel traits

Teosinte introgression in maize, as pointed out by several authors, has played a decisive role in the evolution of modern maize. The introgression degree in the different maizes from America is not similar and it is sometimes necessary for different reasons to recognize what races or varieties have teosinte introgression. To date, the recognition of teosinte introgression in maize has been fundamentally detected by studying certain morphological traits, especially the structure of the female inflorescence.

Considering that teosintes, especially those belonging to the *Luxuriantes* section (Doebley and Iltis, 1980), have distinctive traits in the tassel that make them completely different from maize, it flashed into our minds to find out if quantitative traits of the male inflorescence can be used to measure the effect of introgression. Nine quantitative traits of the male inflorescence were employed to compare two maize populations. One of them represents actually cultivated maizes and it is composed of a mixture of red flint commercial hybrids grown in Argentina. We called this population Normal (N). The other maize population introgressed by perennial teosinte (I) was obtained through the methodology previously communicated (MNL 60:82).

The traits that were sized, some of them used by Doebley and Iltis (1980) to work out the taxonomic classification of the genus Zea, were the following: tassel branch number (TBN); tassel branching axis length (TBAL); tassel central spike length (TCSL); lateral tassel branch internode length (LTBIL); distance between the two primary lateral veins of male spikelet glume (DVL); number of veins between primary lateral veins (VBL); total vein number (TV); total tassel branch length (TTBL) and tassel dry weight (TW).

Some of those same traits evaluated on perennial teosinte (Z. perennis) and its F2 and F3SM progenies (see MNL 59:70) are given in Table 1, to take them as a reference, and to note what are the changes that have taken place. Perennial teosinte has low TBN and low TBAL, when we compare it with maize. It also has short tassel internodes. In the F2 progeny (derived from hybrids with maize), those traits increase their value comparing to teosinte. In an F3 population descending from the F2, and selected for maizoid traits, TBN, TBAL and TCSL increase. F3SM was used as donor of perennial teosinte germplasm to obtain the introgressed population (see MNL 60:82).

Table 1. Tassel traits of perennial teosinte (Zp) and its progenies F2 and F3SM derived from crosses with maize.

Character	Zp	F2	F3SM
TBN	2.8 ± 1.2	7.8 ± 4.2	17.9 + 6.6
TBAL (cm)	1.6 ± 0.4	5.1 + 2.3	10.9 + 2.4
TCSL(cm)	9.4 ± 1.9		19.5 ± 2.9
LTBIL (mm)	3.7 ± 0.3	4.7 ± 1.0	4.5 ± 0.9
DVL (um)	2.4 ± 0.3	4.5	A
VBL.	12.0 ± 1.1	*	
TV	17.9 ± 1.7	-	

On a sample taken at random from each population (approx. 100 tassels from each one), determinations were carried out on N and I. Results are shown in Table 2. The introgressed population does not differ from the normal one in such traits as TBN, TBAL and TCSL. On the other hand it has shorter internodes, a greater number of veins

Table 2. Tassel	traits of normal	(N) and	perennial	teosinte
introgressed (I)	maize populatio	ons.	•	

Character	N	I	Sig.(1)
TBN	22.6 ± 6.4	23.6 + 9.2	NS
TBAL (cm)	13.5 + 2.7	14.2 + 3.4	NS
TCSL(cm)	21.8 + 3.5	20.9 ± 4.4	NS
LTBIL (mm)	5.9 ± 0.9	4.9 ± 0.9	*
DVL (mm)	2.1 + 0.2	2.2 + 0.3	*
VBL	6.7 ± 1.0	9.5 + 2.3	*
TV	13.8 + 1.6	16.8 + 2.5	*
TTBL(cm)	302.4 + 92.7	356.5 + 124.9	
TW(g)	39+13	61+27	

(1):NS: no significant; *: significant at 5% level.

in the male glumes, a greater total tassel branch length and heavier tassels. The higher weight of the tassels belonging to the I population is the result of the greater value of TTBL, as the correlation between TW and TTBL (r=0.73) is highly significant. That higher weight also depends on the internode length, because having a higher number of spikelets increases the weight per unit. The correlation between TW and LTBIL is significant (r=-0.39). Probably the higher weight of the tassels also depends on their chemical composition (especially content of SiO₂), for which we shall next make the necessary chemical analyses.

Tassel weight takes our attention because perennial teosinte has small and slight tassels, but when its germplasm is melted with maize germplasm, we obtained heavier tassels (heavier than maize tassels). In each population, the tassel weight depends on the tassel branch number, the correlation value between these traits is significant (r = 0.58). Nevertheless, and as both populations do not differ in their tassel branch number, the weight mainly depends on TTBL and LTBIL. Tassel traits, as those previously pointed out, consequently let us detect teosinte introgression on maize. The shortening of internodes, the greater number of veins in male spikelet glumes and the greater weight of the tassels are particular signs of introgression.

M.B. Aulicino, I.G. Palacios, G. Pischedda¹ and J.L. Magoja

¹Est. Exper. Reg. Agrop. Pergamino INTA

Potential use of diploperennial teosinte germplasm for maize improvement

In 1983 (MNL 60:82), we first presented the idea of using wild germplasm with the purpose of increasing variability in maize. Although we have progressed with great success in the project of introgression using perennial teosinte (see the accompanying article), as we have pointed out before we are also using *Zea diploperennis* as wild germplasm donor. With diploperennial teosinte we have never had the practical difficulties which were set out when we used the other perennial species: maize hybrids and the backcrosses are fertile, and the good viability of the kernels obtained let us derive a quantity of material with which we are actually working.

As summarized in Figure 1, interspecific hybrids between maize (as female parent) and diploperennial teosin-

Figure 1. Method of diploperennial teosinte introgression in maize.

te (as male parent), were carried out. The F1 hybrids were backcrossed by maize, obtaining the first backcross progeny (FBCP). Only one backcross was enough to get the greatest part of specific maize traits back. From the FBCP, we have begun a selection and recombination process to obtain an improved population that can be employed in the near future for practical purposes. During the growing season 1985/86, FBCP population was cultivated in three different locations of the province of Buenos Aires, among them, Pergamino. In this location, based on individual plants, a series of traits of agronomic importance were measured. The results obtained are given in Tables 1 and 2.

Table 1. Plant traits of FBCP (Pergamino 85/86).

Character	Mean + SD	Range
Days to tassel	60.9 + 4.4	56-76
Days to silking	71.8 + 5.6	60-85
Days to pollen	67.8 + 5.5	58-83
Protoandrous (davs)	4.1 + 2.0	1-8
Plant height (cm)	167.1 + 15.0	135-200
Ear insertion height (cm)	111.4 + 18.7	70-157
Number of tillers	2.6 + 1.1	1-5
Number of ears per plant	5.6 + 4.0	1-18

Table 2. Ear traits and plant yield of FBCP (Pergamino 85/86).

Character	Mean + SD	Range
Far diameter (cm)	2.7 * 0.5	1.6-3.6
Far lenght (cm)	10.9 + 2.4	7-17.5
Number of kernel rows	9.9 + 1.8	4-14
Kernel number per row	14.9 + 5.4	6-26
Kernel number per ear	151.3 + 70.2	44-300
Far weight per plant (g)	122.7 + 68.0	20-300
Kernel weight per plant (g)	79.0 ÷ 52.4	10.5-257.6
Weight of 50 kernels (g)	10.2 + 2.1	6.4-18.9

In general, as in the case of the maize population introgressed with perennial teosinte, this one introgressed by diploperennial teosinte shows plants which join a good deal of agronomic traits. The plants of the FBCP are vigorous, extremely prolific, and show for the greatest part of the measured traits a high variability, which includes from little developed and poor-yielding plants, up to those combining prolificacy with a big ear size and high yield.

In this population the greatest part of the plants are chiefly prolific, and for this reason ears are generally small, but despite this fact there is a wide yield and ear size variability which can be used for selection.

The results obtained up to the present in the projects of wild germplasm introgression demonstrate that the possibilities of increasing genetic variability in maize are enormous. This is especially possible when the less closely related teosintes are used. The possibility that in the near future the yield of maize can be significantly increased through non-conventional improvement methods has a solid base. It has been pointed out by several authors that the great productive efficiency of modern maize could be a direct consequence of introgressive hybridization with teosinte. If the greatest part of modern maize variability has been produced or supported by natural teosinte introgression, it is easy to suppose that nowadays we dispose of the necessary genetic resources that need to be available in the search for better yields.

Gabriela Pischedda¹ and Jorge L. Magoja

¹Est. Exper. Reg. Agrop. Pergamino, INTA

Potential use of perennial teosinte germplasms for maize improvement

As it was previously reported (MNL 60:82), we are working on an introgression project of wild germplasm into maize, with the purpose of increasing heterosis and to produce greater variability in the cultivated species. Perennial teosinte (*Zea perennis*) has been used as donor of wild germplasm through advanced progenies derived from interspecific hybrids with Gaspé (see MNL 60:82). We have employed a great diversity of maize stocks as recurrent parents, especially inbreds, commercial hybrids and whole populations. As a result of controlled introgression carried out according to the scheme given in the last issue (MNL 60:82), we could obtain a perennial-teosinteintrogressed population of maize that constitutes the second back-cross progeny (SBCP).

Only two backcrosses with maize were necessary to recover the specific traits of the cultivated species. Nevertheless, the plants of this population still maintain as their main characteristic a high prolificacy, which is typical of the hybrid progenies between maize and perennial teosinte.

The SBCP was cultivated in several locations, to study its behaviour. It was subjected to an evaluation through the quantitation of some agronomic traits in two locations of the province of Buenos Aires (Pergamino and Santa Catalina). The results obtained are shown in Tables 1, 2 and 3. Generally the SBCP plants are extremely precocious.

Table 1. Plant traits of SBCP (Pergamino 85/86).

Character	Mean + SD	Range
Days to tassel	45.9 + 5.1	37-65
Days to silking	56.4 + 7.6	47-76
Days to pollen	53.6 ÷ 6.4	44-71
Protoandrous (days)	2.9 + 2.4	(-4)-9
Plant height (cm)	151.8 + 19.6	115-210
Ear insertion height (cm)	88.8 ÷ 17.7	50-150
Number of tiller	2.7 + 1.3	1-6
Number of ears per plant	3.4 + 2.8	1-14

Table 2. Ear traits and plant yield of SBCP (Pergamino 85/86).

Character	Mean + SD	Range
Ear diameter (cm) Ear lenght (cm) Number of kernel rows	3.6 + 0.7 14.9 + 2.8 12.6 + 2.4	1.6-4.7 5.5-20
Kernel number per row	19.6 + 8.1	2-38
Kernel number per ear	258.1 +117.9	8-496
Ear weight per plant (g)	168.7 +106.3	25-475
Kernel weight per plant (g)	118.5 + 82.2	3-368
Weight of 50 kernels (g)	12.8 + 3.1	3-19.2

Table 3. Relevant traits of SBCP cultivated in two localities (85/86).

	Locality	
Character	Pergamino	Santa Catalina
	(Average * SD)	(Average + SD)
Number of ears per plant	3.4 # 2.8	4.7 + 3.4
Far lenght (cm)	14.9 * 2.8	12.9 ÷ 2.4
Far diameter (cm)	3.6 - 0.7	3.1 + 0.3
Number of kernel rows	12.6 - 2.4	11.7 + 2.4
Kernel number per row	19.6 # 8.1	23.6 + 4.6
Wroght of 50 kernels (g)	12.8 - 3.1	10.8 + 1.9
Kernel weight per plant (g)	118.5 \$ 82.2	109.7 + 67.8

It really calls attention to the fact that, though they are short cycle plants, some of them have a luxuriant development joined to a high yielding capacity. Some plants' yield is really unusual in such early individuals. Protandrous value is low, though quite variable, as there can be chosen plants with protogynous (like teosinte) up to those with remarkable protandrous levels. Tillering still perpetuates in the SBCP plants, but tillers are really scarce and almost as vigorous as the principal stalk and able to flower at normal plant densities. Cropping the studied population with a density of 57,000 plants/ha does not constitute any

66

obstacle to the expression of a high prolificacy. These plants' prolificacy is not only the result of the existence of several tillers, but of the developing capacity of several productive nodes per tiller. Ear size is not big, but is acceptable if we consider that there is a greater number of ears per tiller than in common maize.

The majority of all those traits studied points out a high variability among the SBCP plants for different traits combinations, and let us suppose that there is enough base to improve significantly the population, especially for its yield.

The average values resulting from the evaluation of different traits (see Tables 1 and 2) arise from computing in a sample taken at random, including little-developed plants with small ears and highly sterile, susceptible to insects and disease damage, up to those plants which join the greatest part of those traits which define the maize ideotype. These exceptional plants are able to produce almost half a kilo of kernels when we spread them at normal plant densities.

To date the results obtained show the potential usefulness of perennial teosinte germplasm in the genetic improvement of maize. This introgression of perennial teosinte genes or gene groups into the genetic background of modern maize can positively affect quantitative inheritance traits.

An enormous variability was generated in the SBCP as a result of introgression, and this can be explained on the basis of transgressive combinations. It is just where extreme combinations can be produced through unusual phenotypes, that a wide possibility of getting the superior individuals back is presented. Plants combining strong stalks and roots, simultaneous sex maturation, precocity and high yield do not appear in low frequency and they constitute the base of a selection process that we have already begun. Extreme individuals with exceptional yield have a potential productive capacity much greater than those maize plants actually cultivated.

Gabriela Pischedda¹ and Jorge Luis Magoja

¹Est. Exper. Reg. Agrop. Pergamino, INTA

Relevant traits and heterosis of diploperennial teosinte-maize hybrids

During the growing season 1984/85, small populations of F1 individuals from the cross between diploperennial teosinte (*Zea diploperennis*) and a sweet corn variety (Evergreen), and both parents, were cultivated in separate plots. A series of traits was evaluated on a sample of F1 hybrid plants taken at random. Results are summarized in Table 1. Excepting those traits belonging to the cycle time, the rest show a considerable variation between F1 plants

Table 1.	Relevant	traits o	fZ.	diploperennis x	Evergreen	F1
hybrids.						

Character	Mean + SD	Range
Days to tassel	79.5 + 4.0	67-83
Days to silking	101.6 + 5.3	93-113
Days to pollen	94.9 + 5.5	84-108
Protoandrous (days)	6.7 + 6.1	(-5)-23
Tillers per plant	6.8 + 2.5	2-13
Productive modes per tiller	5.1 + 1.0	3-7.5
Ears in the upper most node	6.2 + 3.1	2-14
Ears per tiller	29.4 + 14.0	8.5-64.5
Ears per plant	176.0 +100.8	29-444
Kernel row number	4.4 + 1.1	2-6
Plant yield (grams)	179.8 + 86.2	28.8-370.9
Tassel central spike type	Distichous (81%)	Polystichous (19%)
Ear type	Distichous (74%)	Polystichous (261)
Female spikelets arrangement	Paired (93%)	Single (71)
derived from the same cross. It is possible that this is a consequence of the expression of different F1 genotypes.

Likewise the expression of specific traits such as tassel central spike type, ear type and female spikelet arrangement is not uniform, though with the predominance of one of the possible states of each trait. The results obtained point out that the inheritance of those traits by which maize is distinguished from teosinte cannot be attributed to simple genes unless, as is probable, a strong modification is caused by the genetic background of each particular hybrid. As was previously communicated (MNL 59:68) the expression of specific traits in other hybrids between diploperennial teosinte and maize was different. This fact let us suppose that each particular type of maize can have a different influence on the expression of specific traits in the hybrids obtained. The most conspicuous aspect in these hybrids is the enormous heterosis that they reveal, which is mainly expressed through a greater number of productive nodes, ears per tiller, ears per plant and plant yield, over the average of their parents (Table 2).

Table 2. Comparison of prolificacy traits and plant yield between Z. diploperennis x Evergreen F1 hybrids (Zd x Eg) and the parents.

Character	2d	Eg	Zd x Fg	MP(1)	<pre>% heterosis(2)</pre>
Productive modes	5.6	1.1	5.1	3.4	50
Ears in the uppermost node	1.0	1.0	6.2	1.0	520
Ears per tiller	7.0	1.1	29.4	4.1	617
Ears per plant	105.0	1.1	176.0	53.1	231
Plant yield	26.5	98.6	179.8	62.6	187

(1): mid parent value--MP= Zd + Eg/2

(2): per cent of heterosis= (F1- NPAP) x 100

Yield and prolificacy have a high heterotic expression. Highly significant increase of productivity per plant, not only relative to the parental average but to the higher yield parent, results.

This particular fact lets us suppose that diploperennial teosinte constitutes a genetic resource of great value, which can be used in projects whose objective is the increasing of yield of those cultivated species.

The heterotic expression of those traits of economical importance such as yield can be detected early in F1 individuals. Although these plants do not join appropriate agronomical characteristics, to be directly cultivated, the additional generated heterosis can be availed in projects of controlled introgression, as communicated in this issue.

I.G. Palacios and J.L. Magoja

Variation within Zea: numerical analysis of 43 traits

Taxonomy and phylogeny of the taxa of Zea is still a matter of discussion, and there are completely opposite interpretations despite the large amount of information produced in the last few years. Especially after the last taxonomic treatment of the genus (Doebley and Iltis, 1980) there was produced a wide and diverse body of information that, through morphological, cytological and biochemical studies, has mainly contributed to a correct characterization of the taxa within Zea. Nevertheless, at times, the same available data can lead, depending on the method, to completely different interpretations.

It is because of that, as we have been doing up to now (MNL 59:61, MNL 60:79) and like other authors have also done, we propose an objective handling of the available information through appropriate methodologies, in which each author's preconceived ideas do not have any influence.

Grouping methods by numerical techniques based on a great number of equal importance traits seem to be adequate for this purpose. The objective of this article is to show the results obtained for taxa within Zea, on the basis of 43 traits.

The greatest part of these traits, especially the quantitative ones, were obtained after the evaluation of small populations of the taxa within the genus, and all of them were cultivated under similar environmental conditions. The data obtained from a large number of plants belonging to each of the taxa were used in partial clustering that we have shown before (MNL 59:61; MNL 60:79).

Now, our purpose is to show as a whole those groups carried out on the basis of all our available information. Z. perennis (Zp), Z. diploperennis (Zd), Z. luxurians (Zl), Z. mays ssp. parviglumis var. parviglumis (Zmpp), Z. mays ssp. parviglumis var. huehuetenangensis (Zmph), Z. mays ssp. mexicana (Zmmx) and Z. mays ssp. mays, constitute the 7 operational taxonomic units (OTU's)

Forty-three characters were scored for each OTU as follows: (1) tassel central spike distichous (0), polystichous (1); (2) tassel branch number; (3) tassel branching axis length (cm); (4) tassel central spike length (cm); (5) lateral tassel branch internode length (mm); (6) tassel branching abscission layer absent (0), strongly to weakly developed (1), strongly developed (2); (7) tassel branching rachis flattened (0), rounded (1); (8) distance between the two primary lateral veins of male spikelet outer glume (mm); (9) number of veins between primary lateral veins of male spikelet outer glume; (10) total vein number of male spikelet outer glume; (11) male spikelet outer glume wing absent (0), present (1); (12) male spikelet outer glume primary lateral vein narrow and sparse (0), wide and prominent (1); (13) male spikelet outer glume stiff (1), papery (2); (14) male spikelet outer glume flattened (0), rounded (1); (15) number of fruit cases per spike; (16) female spike distichous (0), polystichous (1); (17) female spikelet arrangement single (1), paired (2); (18) kernel enclosed (1), naked (0); (19) cupule orientation vertical (0), horizontal (1); (20) kernels per cupule one (1), two (2); (21)cupulate fruit case trapezoidal (2), triangular (1), horizontally compressed (0); (22) kernel small (0), intermediate (1), large (2); (23) fruit case weight (mg); (24) fruit case length (mm); (25) fruit case width (mm); (26) fruit case thickness (mm); (27) pericarp thickness (µm); (28) aleurone layer thickness (μm) ; (29) starch granule size (μm) ; (30) zein body size of zone 1 (μ m); (31) zein body size of zone 2 (μ m); (32) zein body size of zone 3 (μ m); (33) endosperm protein content (%); (34) Landry-Moureaux saline soluble proteins (%); (35) zein; (36) glutelin-1; (37) glutelin-2; (38) glutelin-3; (39) growth habit perennial (1), annual (0); (40) rhizomes present (1), absent (0); (41)chromosome number 2n = 40 (2), 2n = 20 (1); (42) chromosome knob position terminal (1), terminal and internal (2); (43) number of tillers per plant.

Given a basic data matrix (BDM) (Table 1) of 43 characters by 7 OTU's the data were analyzed by cluster analysis. The BDM was standardized by characters, and phenograms were derived by the Pearson product-moment correlation coefficient applying the unweighted pair group method using arithmetic averages (UPGMA) (Figure 1A) and the "Mean Taxonomic Distance" between pairs of OTU's served as input in the calculation by UPGMA (Figure 1B). The "Manhattan Distance" between pairs of

Table 1. Basic data matrix.

						Chu	aract	ers							
oru's	1	Z	3	4	5	6	7	8	9	10	11	12	13	14	15
Zp	0	2.8	1.6	9.4	3.7	2	0	2,4	12.0	17.9	1	1	1	0	5.1
Zđ	0	6.3	1.8	7.9	4.7	2	0	2.5	10.5	16.6	1	1	1	0	7.5
Z1	0	14.0	3.9	6,3	4.7	2	0	2.4	15.3	25.8	1	1	1	0	6.4
Zmpp	0	57.9	9.1	6.1	4.4	1	1	1.7	4.3	8.8	0	0	2	1	8.8
Zmph	0	29.4	8.6	8.3	5.2	1	1	1.9	6.8	13.7	0	0	2	1	8.6
ZINNEX	0	24.5	14.1	12.0	4.4	1	1	2.5	5.3	10.2	0	0	2	1	11.Z
Zmm		22.6	13.5	21.8	5.9	0	1	2.1	6.7	13.8	0	0	25	1	NC

								Char	racter	5					
OTU's	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Zp	0	1	1	0	1	2	0	54.6	7.0	4.1	3.3,	17.0	42.3	17.3	1.7
Zđ	0	1	1	0	1	2	0	\$9.7	7.5	4.4	3.5	21.0	39.7	12.5	1.5
21	0	1	1	0	1	2	0	6Z.3	8.7	4.1	3.6	13.6	31.8	17.6	1.7
Zmpp	0	i.	1	0	1	1	0	36.4	6.1	3.6	2.7	12.8	28.3	17.1	1.7
Zmph	0	1	1	0	1	1	0	29.0	6.2	3.6	3.0	13.8	29.5	17.0	1.3
Zmmox	0	1	1	ū	1	1	1	104.6	8.4	5.5	4.4	23.9	42.0	14.9	1.4
Zmm	1	2	0	1	2	0	2	NC	NC	NC	NC	95.8	45.9	16.0	1.8

	Characters												
onu's	31	32	33	34	35	36	37	38	39	40	41	42	43
2p	1.6	1.4	21.0	1.8	57.1	20.7	3.3	9.2	1	1	2	1	NC
Zd	1.2	1.0	27.0	3.1	67.1	9.2	7.5	10.0	1	1	3	1	NC
Z1	1.5	1.1	23.6	3.3	70.5	7.9	2.3	9.9	0	0	1	1	NC
Zmpp	1.2	0.9	26.5	2.6	71.5	7.1	1.9	9.3	0	0	1	2	11.8
Zmph	1.0	0.9	23.4	1.8	67.9	12,9	2.4	12.2	0	0	1	2	23.9
Zmmox	1.4	1.0	17.7	4.3	58.9	7.4	2.4	14.6	0	0	1	2	4.8
Zmm	1.5	1.4	11.4	5.7	51.9	12.3	9.6	13.0	0	0	1	2	NC

OTU's served as input in the calculation of "Prim Network" and "Wagner trees" (Figure 2).

The cluster of taxa, shown in Fig. 1, is partially congruent with those previously carried out (MNL 59:61, MNL 60:79, 60:81) but based on partial information and a smaller amount of data. As can be seen in Fig. 1, as much in one phenogram as in the other a characteristic cluster is repeated, which comes out to be independent of the

Figure 1. Phenograms of 7 OTU's resulting from the: (A) UPGMA cluster analysis of the OTU x OTU correlation matrix (B) UPGMA cluster analysis of the OTU x OTU distance matrix. r = cophenetic correlation coefficient.

genus Zea (A). Prim Network for the 7 OTU's based on 43 characters. (B) Wagner tree for the 7 OTU's based on 43 characters, considering Z. perennis as ancestor. (C) The same as B and considering a hypothetical OTU as ancestor (HA). (D) Wagner tree based on 16 relevant characters, considering Z. perennis as ancestor. (E) The same as D and considering a hypothetical OTU as ancestor (HA). Number corresponding to HTU's represents the construction seru quence of the tree. Arrows indicate the evolutionary direction.

Figure 2. Prim Network and evolutionary trees for the

method employed. Three groups are established, one consisting of Zp-Zd-Zl, which represents the most primitive teosintes of the *Luxuriantes* section (Doebley and Iltis, 1980). Another group consisting of Zmpp and Zmph is

more related to the primitive group of teosintes than to the remaining group, Zmmx-Zmm. It is important to emphasize the fact that different clusters previously carried out (MNL 59:61), and on the basis of different traits, always relate Zp-Zd and Zl in the same group. In contrast, the linkage of the rest of the taxa has been variable, though by now the clusters in Fig. 1 can be considered as much more exact because they are based on a great number of traits.

The taxa of the Zea Section (Doebley and Iltis, 1980) constitute two groups, where Zmpp-Zmph would be much more related to the most primitive teosintes than to the taxa of their own section. This fact states the need of re-examining the taxonomy of section Zea on the basis of appropriate studies. If Zmpp, Zmph and Zmm-Zmmx were variants of the same species they must be linked more closely.

Prim Network and Wagner trees represented in Fig. 2 show a high congruence with the ones previously shown (MNL 59:61; MNL 60:81). The taxa of the genus can be related between two extremes: Zp and Zmm. Just in these two species (perennial teosinte and maize) all the necessary basic information is gathered to produce the other variations shown in the remaining taxa.

Our experience on hybrids between perennial teosinte and maize (see previous MNL issues), with the information that we are considering about the variation in Zea, suggest to us that Zp and Zmm can be considered basic species with which we can experimentally build all (or the greatest part) of the variation in the genus.

Our main idea about the evolution of Zea is like that of other authors, that maize introgression in teosinte (in a primitive teosinte) could have been the main factor in the differentiation of the taxa of this genus. If it were true and could be experimentally demonstrated, the evolutionary trees that we've simulated would be indicating the direction in which introgression increases. The teosintes placed at the bottom of the trees are those which have kept more differences with maize. As we study the top of the trees, the degree of introgression is higher up to a maximum represented by Zmmx, which can be essentially considered a maize which has kept the few necessary genes for wild life.

> J.L. Magoja, I.G. Palacios, M.B. Aulicino, L.M. Bertoia and M. Streitenberger

LONDON, ONTARIO, CANADA University of Western Ontario

Analysis of variability in plants produced with pollen from cultured tassels

In recent Newsletters, we reported that immature tassel meristems of both cv. Se60 and Oh43 can be cultured successfully from anther initiation through normal meiosis and microsporogenesis to production of trinucleate, normal pollen (MNL 55:116, 1981; MNL 59:72, 1985). The pollen so produced germinates on agar (MNL 59:73, 1985) and on silks and also fertilizes ovules to produce mature kernels (MNL 60:89, 1986). We report here further observations from studies undertaken among the progeny derived from in vitro generated pollen in comparison with those derived from in vivo generated pollen to evaluate variability (tissue culture induced somaclonal variation) by: 1) phenotypic analysis, 2) chromosome analysis and 3) gel electrophoresis.

The kernels produced with in vitro pollen from both cultivars (Se60 and Oh43) were grown in our London nursery during the 1985 and 1986 field seasons and the following observations were taken: 1) plant height; 2) number of leaves/plant; 3) leaf width; 4) tassel length; 5) number of tassel branches; 6) pollen fertility; 7) P% (P = number of kernels per ear/number of ovules per ear) and 8) 100 seed dry weight. The kernels from either cultivar had 100% germinability and yielded mature, healthy, normal and fertile plants. No morphological abnormalities were detected among the progeny (N = 290) either in F1 or F2 generations. Statistical analyses of these characters showed that the plants derived from in vitro pollen (R1) and their selfed progeny (R2) were similar in most respects to in vivo plants for both genotypes. Moreover, the analysis of chromosomes in root tips (N = 45) showed no changes in the chromosome number. The analysis of meiotic chromosomes in these plants is in progress.

Patterns of polypeptide synthesis in plumules and radicles of the seedlings derived from in vitro and in vivo pollen were analysed by 1D and 2D SDS PAGE, according to the procedures used routinely in our laboratory (Can. J. Biochem. 60:569, 1982). Striking differences, both quantitative and qualitative, were observed in the polypeptide patterns 1) between Oh43 and Se60, and 2) between plumules and radicles, no qualitative or quantitative differences were observed in the polypeptide patterns of 1D-gels between in vitro and in vivo seedlings. However, minor quantitative differences between in vitro and in vivo seedlings were detected for a few polypeptides by 2D gel electrophoresis. The significance of these minor differences has yet to be explored.

We conclude that the pollen generated from in vitro cultured tassels produces plants which are similar in most respects to plants produced from in vivo grown pollen with no observable morphological and chromosomal alterations.

D.R. Pareddy, R.I. Greyson and D.B. Walden

A comparison of the response of seedlings to heat shock, cadmium chloride and lannate

The response of plumules and radicles of etiolated maize seedlings (5 days old) to heavy metal treatment involves both a general reduction in protein synthesis and the induction of a group of polypeptides with M_r 's and pl's similar to those of heat shock proteins (HSPs) (MNL 60:92, 1986). The carbamate insecticide lannate (active ingredient:methomyl, $C_5HN_2OS_2$) has a similar impact on protein synthesis in plumules but not radicles of etiolated maize seedlings.

Fluorographic analysis of PAGE separations of proteins extracted from plumules and radicles treated with varying doses of cadmium chloride or lannate (3 hours) and labelled with ³⁵S-methionine (during the last 2 hours of treatment) revealed that cadmium chloride-induced polypeptides are synthesized following treatment with 0.2 mM but not after treatment with 0.02 mM cadmium chloride. Lannate-induced polypeptides are synthesized in plumules of maize seedlings following treatment with 8.5 ml/100 ml H₂O but not following treatment with 3.4 ml/100 ml H₂O. The recommended field dose for lannate is 1.7 ml/100 ml H₂O.

Protein synthesis (monitored as incorporation of ³⁵S-methionine into TCA precipitable material, cpm/ug protein) is reduced approximately 40% following treatment with 0.2 mM cadmium chloride but is not altered significantly by treatment with 0.02 mM cadmium chloride. Following treatment with lannate (8.5 ml/100) protein synthesis in plumules is reduced approximately 60%. It is interesting to note that exposing intact maize seedlings to a heat shock (42.5 C, 3 hours) does not markedly reduce protein synthesis in plumules and radicles. Raising the concentration of cadmium chloride to 2 mM results in a 90% reduction in protein synthesis of treated plumules and radicles and synthesis of cadmium chloride-induced polypeptides remains evident. Following treatment of plumules with 17 ml/100 ml H₂O lannate, protein synthesis is reduced by at least 90% while synthesis of lannateinduced polypeptides remains evident.

Fluorographic analysis of PAGE separations of immunoprecipitates obtained using polyclonal antibodies raised against low M_r (18 Kd) HSPs has revealed the presence of a single polypeptide band (M_r , 18 Kd) immunoprecipitated from proteins synthesized in cadmium chloride treated (5 mM; 3 hours) plumules and radicles and in lannate treated (8.5 ml/100 ml H₂O; 3 hours) plumules. Cadmium chloride treatment administered to plumules and radicles of maize seedlings therefore induces the synthesis of a group of polypeptides with the same M_r s and pIs as 18 Kd HSPs and which are recognized by antibodies raised against these HSPs. Lannate treatment, however, only induces synthesis of these polypeptides in treated plumules.

Following treatment with lannate (8.5 ml/100 ml H₂O; 3 hours) protein synthesis in radicles of intact maize seedlings is reduced by at least 90%. HSP-like polypeptide synthesis in radicles is not apparent following treatment with any concentration of lannate so far tested. Antibodies raised against 18 Kd HSPs do not precipitate a polypeptide from proteins extracted from lannate treated radicles. Lannate is a solution (1.48 M) of methomyl in methanol (68%) (Dupont). Methanol treatment alone does not induce the synthesis of HSP-like polypeptides in plumules or radicles at any of the concentrations tested (1.2%, 2.4%, 5.0% or 12.0%; these concentrations represent the amount of methanol in 1.7, 3.4, 8.5, 17.0 ml/100 ml H2O lannate respectively). General protein synthesis decreases as the concentration of methanol increases but the decrease is not as rapid as following treatment with increasing concentrations of lannate. It remains to be determined whether methomyl alone will induce the synthesis of HSP-like polypeptides or whether this effect is synergistic, requiring the presence of methanol.

Methomyl is selectively toxic to maize lines carrying the male sterile (T) cytoplasm. The effect of methomyl on plants with the T cytoplasm is similar to that of T-toxin isolated from *Helminthosporium maydis* race T (HMT) (Humaydan and Scott, 1977; Hortscience 12:312-313). Both methomyl and T-toxin block oxidative phosophorylation in mitochondria isolated from plants with the T-cytoplasm (Berville et al. 1984, Plant Physiol. 76:508-519). A preliminary comparison of the response of plants (Oh51A) with a normal male fertile cytoplasm (N or carrying the male sterile cytoplasms T, S or C) to heat shock and lannate does not reveal any major differences in the polypeptide synthesis patterns (after ID-PAGE) in plumules of the four maize lines. Currently the response of isolated mitochondria from these four lines to heat shock and lannate are being compared.

Carol A.B. Rees, Annette M. Gullons and D.B. Walden

Multivariate analyses of data from two-dimensional electrophoresis of polypeptides

We have reported (MNL 59:77) on the variation observed among the arrays of polypeptides synthesized by developing maize embryos. Qualitative differences in the species of polypeptides synthesized and quantitative differences in the levels of synthesis were detected among the fluorograms obtained from embryos of different ages. Recent work has led to the adaptation of multivariate techniques for use in the analysis of patterns resulting from the two dimensional electrophoretic separation of polypeptides (Fewster and Walden, Computers in Biology and Medicine, in press).

The method involves the division of a stained gel or fluorogram into a number of discrete grid units each of which represents an axis along which variation may occur. By established criteria, we have selected 16 grid units for the study summarized below. The positions of the lines forming the grid are determined with respect to those of a number of widely separated, readily identified polypeptides such that the entire grid structure may be reproduced accurately on all gels included in the analysis. Each grid unit is assigned a numerical value which reflects the number and intensity of spots residing therein. A variety of different analytical procedures may be employed subsequently to examine the data.

Examples of the application of these methods to a study of variation in polypeptide synthesis during maize embryogenesis are presented in Tables 1 and 2. The data were obtained from the two dimensional arrays of polypeptides synthesized by embryos of Oh43 at 15, 20, 25, 30, 35, 40, 45 and 52 days after pollination. Table 1 shows the results of a Principal Components Analysis (PCA) where the first two components (PC1 and PC2) comprised 66.6% and 15.5% of the total variation respectively. The greatest contributions to the variation expressed by these components was evident in eigenvectors 3, 5, 7, 10 and 11 which represent the corresponding grid units. PC1 appears to contrast variation in grid unit 5 with that in grid units 3,

	PC1				PC2	
EV	VC	ICS	IA	ICS	ŶĊ	EV
3	-0.46	-0.93	15	-0.37	0.79	5
5	0.47	-0.90	20	-0.32	0.26	10
7	-0.43	-0.33	25	0.27		Ľ.,
10	-0.27	-0.48	31	0.32		
11	-0.33	0.15	35	0.46		
		0.65	40	0.15		
		1.05	45	-0.56		
		0.79	52	0.04		

Table 1. Principal components analysis (PCA) of fluorograms obtained from developing Oh43 embryos.

EV - eigenvector VC - vector coefficient

 Table 2. Deviations from random expectation for the first lattice of a concentration analysis of fluorograms obtained from developing Oh43 embryos.

GU IA	5	3	7	10	11
15	-1.90	0.96	0.49	0.30	0.73
20	-1.49	0.76	0.39	0.24	0,58
25	-0.46	0.23	0.23	0.07	0.18
31	-0.63	0.32	0.16	0.10	0.24
35	0.47	-0.24	-0.12	-0.07	-0.18
40	1.60	-0.81	-0.42	-0.25	-0.62
45	1.49	-0.76	-0.40	-0.24	-0.58
52	0.89	-0.46	-0.23	-0.14	-0.35

IA - individual age (d.a.p.)

GU - grid unit

7, 10 and 11. Upon examination of the distribution of individual component scores along this component, a developmental trend emerges in which the density of grid unit 5 is observed to increase and the density of grid units 3, 7, 10 and 11 decrease as embryogenesis progresses between 15 and 55 days. PC2 expresses variation attributable to the combined effects of grid units 5 and 10. In this case a discrimination is made between embryos mid way in development from those which are older and younger, in that the combined relative densities of these two grid units are higher in the former.

Table 2 shows results obtained from a concentration analysis of these data where deviations from random expectation are measured for all grid units of an individual. This analysis partitions the variation into a number of lattices, the first of which is presented here, comprising 57.5% of the total.

The results obtained suggest a developmental trend similar to that which emerged through PCA. As embryogenesis proceeds from early through late development, the deviations associated with grid unit 5 change from negative to positive while the reverse is observed from grid units 3, 7, 10 and 11, indicating shifts from lower to higher and higher to lower densities respectively. Values obtained for these deviations in embryo mid-development are intermediate to those of early and late development.

Although some variation was lost in the process of grouping polypeptides into grid units, good correlation was observed between results obtained with this method and those of conventional forms of analysis. The multivariate techniques described should prove effective in the detection and representation of trends in any investigation in which the analysis of two dimensional separation of molecules is undertaken.

J.G. Boothe and D.B. Walden

Anther culture from stamens of the ears of an1

Anther culture is becoming an accepted procedure for the production of isogenic diploid lines from the embryogenic haploid tissues. Although the technique has proven to be difficult with corn, success is possible. In all previously reported work, however, stamens were derived from tassels.

In this study, stamens were obtained from the ears of the anther-ear mutant (an1). Ears were harvested when the anthers contained meicoytes at the 'uninucleate' stage

and were wrapped in 'Saran Wrap' and stored in the dark for 8 days at 10 C. They were then surface sterilized with 10% 'Javex' and rinsed with sterile water. The anthers were removed and cultured in plastic petri dishes and sealed with 'Para Film'. Two media were tested: 1) YP medium (Genovesi and Collins, Crop Sci. 22:1137-1144, 1982) with TIBA (0.1 mg/l), casein hydrolysate (500- mg/l), myo-inositol (100 mg/l) and sucrose (120 g/l) and 2) MS medium with proline (1500 mg/l), kinetin (5 × 10⁻⁷M), myo-inositol (100 mg/l) and sucrose (60 g/l). Each 60 mm plastic petri dish contained 4 ml of autoclaved liquid or agar (0.6%) medium.

After approximately 6 weeks in the dark at 25 C white calli were produced from some cultured anthers and the results are summarized as follows:

Medium	No. of anthers Cultured	No. Calli embryoids	Percent
YP Liquid	400	0	0
YP Agar	434	10	2.9%
MS Liquid	428	14	3.3%
MS Agar	485	3	0.6%

The bulk of the calli grew but remained non-organogenic. A few plantlets have been recovered and are presently being reared in the light on N6 medium. While no chromosome counts are yet available, there seems little doubt that the calli were derived from the sporogenous tissue.

While this represents a novel use of "ear-derived" anthers, the significance and utility of this observation remains obscure.

V.R. Bommineni and R.I. Greyson

Polypeptide differentiation associated with maturation of organs on tassels and ears

In maize, while both inflorescences are initially bisexual, female spikelets mature into ears and male spikelets mature into tassels. The molecular basis of this differential development has not been studied although plant growth regulators are known to be involved.

We report here preliminary observations on polypeptide variability associated with the maturation of male and female spikelets. Tassels and ears of different developmental stages (lengths) were labelled with diluted ³⁵Smethionine (5 ul in 200 ul H₂O) for 2 h at 27 C. One hundred spikelets were dissected from each labelled inflorescence. In the case of older (> 12.0 mm) inflorescences, their developing organs (ovary, silk or stamens etc.) were isolated. The tissues were homogenized separately in buffer containing 200 mM tris-HCl, 5% SDS, 7.5% β -mercaptoethanol, 1 mM PMSF, 10% glycerol at pH 7.5. Radioactive incorporation was determined by scintillation counting of TCA precipitable material. Protein samples were separated by 1D SDS PAGE and 2D IEF-SDS PAGE and fluorography was performed.

No major qualitative differences between tassel and ear or between young and older inflorescences were detected on the 1D fluorograms. While many polypeptides (>150) were resolved by 2D PAGE and fluorography, most were common to all fluorograms. A few unique polypeptides were consistently related to specific samples. At least two polypeptides were associated with maturation. One polypeptide (18 kd, approx. pH 7.0) was associated with developing ovaries and silks but not with male flowers. A second polypeptide (25 kd, approx. pH 5.5) was associated with maturing stamens but not with female flowers. In addition, a few polypeptides, unique to either male or female flowers, appeared and then disappeared as the flowers matured. Whether the few polypeptide differences which were detected are related to the regulation of, or are the result of, differentiation remains for further studies.

> V.R. Bommineni, R.I. Greyson, D.B. Walden and B.G. Atkinson

More oncogene-related sequences

We reported (MNL 60:91, 1986) on the presence of oncogene-related sequences in maize. In that report, labelled probes (v-Ki-ras and v-src), from Oncor Inc., were used to detect homologous sequences in the maize genome via nick translation and southern hybridization. In this report, we extend the number of oncogenes with related sequences in the maize genome to include v-myc, v-myb, and v-Ha-ras.

Maize DNA was isolated from 5 day old, Oh43 plumules as described by Dellaporta et al. (Molec. Biol. for Plants, pp. 36-37, 1984) and then treated as follows. After resuspension in TE, the DNA was incubated with 250 ug/ml of RNase A at 37 C for one hour, followed by an incubation in proteinase K at 50 C for one hour. The sample was extracted with first phenol/chloroform and then ether followed by dialysis against TE (pH 8.0) for three hours. The DNA was precipitated in 2 M ammonium acetate plus 2 volumes of 95% ethanol and resuspended in TE (pH 8.0) at a concentration of at least 0.4 ug/ul. Digestion of the DNA was carried out overnight with three to four times excess of BamHI or EcoRI using the buffer system recommended by the manufacturer (Boehringer-Mannheim).

E. coli and human EcoRI digested DNA served as controls; all DNA samples were electrophoretically separated on 0.8% agarose gels. Transfer of the DNA to Zeta-Probe (BioRad) charged nylon membrane using 0.4M NaOH as the transfer buffer was undertaken and the blots were rinsed in 2X SSC for 5 minutes and vacuum baked at 80 C for 30 minutes.

Plasmids containing viral oncogene inserts were purchased from American Type Culture Collection. V-myc, v-fos, v-myb and v-Ha-ras inserts were isolated from plasmid pBr322 sequences by cutting with the appropriate restriction endonuclease, electrophoretically separating the fragments on low temperature agarose gels, slicing the gel segment containing the insert out of the rest of the gel, melting it and then purifying the insert through a BioRad RDP column.

Although contamination of inserts with pBR322 was minimal, unlabelled, denatured plasmid was included in each oncogene hybridization reaction to remove any contaminating labelled pBr322. Oncogene inserts were labelled using the Pharmacia oligolabeling kit to a specific activity of approximately $1 \times 10 \exp 9$ cpm/ug.

The prehybridization buffer consisted of 1.5X SSPE, 1% SDS, 0.5% "Blotto" (Carnation low fat milk powder), and 500 ug/ml of sheared and denatured salmon sperm DNA; the incubation temperature was 65 C. Hybridization buffer had 10% dextran sulphate included. Wash buffer was 0.1X SSP, 1% SDS at 62 C. Hoeffer's "HybridEase" chambers were used for prehybridizations, hybridizations and washes.

The probes did not detect any homologous sequences in $E. \ coli$ DNA, confirming an earlier report by Bishop (The Harvey Lectures, Series 78, pp. 137-172, 1982-83).

The v-myc probe detected 2 bands of near identical size (approximately 4.4 kb) in the BamHI digested maize DNA lanes. All previously reported myc-related sequences were detected in the human DNA (c-myc, L-myc, and N-myc). It has been reported (Alitalo et al., PNAS 80:100, 1983) that V-myc contains a 250 bp region with high G-C content (84%) which can lead to spurious hybridization signals. To test for spurious signals, we are removing this region from the insert.

V-myb detected a single sequence in maize of approximately 8 kb. The three myb-related sequences in human *Eco*RI digested DNA were also detected (Franchini et al., PNAS 80:7385, 1983).

Under the hybridization conditions used, no homologous sequences to v-fos were found in maize.

The v-Ha-ras probe produced several hybridization signals in maize *Eco*RI or *Bam*HI digested DNA. V-ki-ras had been previously shown (MNL 60:91, 1986) to detect multiple bands in maize DNA. Cross homology was detected between these 2 probes using the hybridization conditions listed above. Although a few maize hybridization signals were unique to each of the two ras probes, most bands were detected by both probes. This complex hybridization pattern between the 2 probes is currently being investigated using high stringency conditions to determine if any of the common sequences are unique to one probe or the other.

These results and those reported last year emphasize the evolutionary conservation of these sequences, thus implying their importance to cell function. Work is underway to determine if the maize sequences are transcribed and if so, in what tissues and under what conditions.

R. Zabulionis, D.B. Walden and J.D. Procunier

Use of leaf discs to monitor protein synthesis under field conditions

As reported last year (MNL 60:93, 1986), a study to monitor variation in leaf polypeptide synthesis patterns was undertaken for several field management practices and various cultivars of maize. This study involved attempts to report on the phenotypic variation found among the maize cultivars in the field as revealed through electrophoretic and fluorographic procedures in the laboratory. The laboratory work from the 1985 growing season was repeated for the 1986 growing season. A favorable growing season in 1986 produced expected differences among field plots, planting dates and cultivars. The "base-line" of growth measurements (height, number of leaves etc.) for the 1986 season were highly correlated with those reported for the 1985 growing season.

To analyze the detailed information collected from the fluorograms obtained during the two growing seasons, a newly developed technique employing multivariate analyses was performed (P. Fewster and D.B. Walden, in press). These methods involve a principal components analysis and an analysis of concentration, which define and outline any trends in variation (of polypeptide synthesis among cultivars, field plots etc.). Our system (field grown material, ³⁵S-methionine exposure, electrophoresis, fluorography and statistical analyses) appears sensitive enough to enable preliminary observations on the objectives: 1) to identify proteins that may be unique to cultivars; 2) those that may have a role in heterosis; and 3) those that are of developmental significance.

The analyses revealed that some of the polypeptides synthesized were unique to specific cultivars and specific field plots. Few (less than 1%) differences were found between planting dates of the same cultivar/plot when comparisons were made with leaves of the same age. The variation among cultivars in the control plot was small in general and less than among other comparisons. The stress and optimal field management plots reveal a much greater directed variation in the polypeptide synthesis patterns trends as compared to that of the control or each other. These observations suggest that as the control conditions or those to which the cultivars are most 'adapted' are altered the cultivar responds to this new set of management conditions in ways which result in increased variation in polypeptide synthesis. This variation in polypeptide synthesis may allow the cultivar to adapt to a greater range of growth conditions. Also, polypeptide synthesis patterns throughout development show both similarities and differences between inbreds and hybrids. Our data and analyses confirm the view that hybrids are better able to respond favorably to more extreme management conditions than are the inbred cultivars.

T.G. Crowe and D.B. Walden

MEADVILLE, PENNSYLVANIA Allegheny College LONDON, ONTARIO, CANADA University of Western Ontario

Effect of erythromycin on seedling growth, thermotolerance and synthesis of 52kD mitochondrial heat shock protein

Corn seedling mitochondria respond to temperature elevation and 50 uM arsenite treatment by the enhanced synthesis *in organello* of a 52 kD protein. We have defined this protein as a mitochondrial heat shock protein (HSP) (Nebiolo and White, Plant Phys. 79:1129, 1985). We are continuing to investigate the potential role of this protein in the mitochondria, as well as in the cellular heat shock response in light of various lines of evidence implicating the mitochondria as the primary target to heat and chemical stress (Nebiolo and Walden, J. Cell Biol. 79:258a, 1986).

Erythromycin (100 -150 uM) inhibits plastid *in organello* protein synthesis, while having no significant inhibitory effect on the mitochondrial translation apparatus (Tassi et al., Plant Sci. Lett. 29:215, 1983; Newton and Walbot, PNAS 82:68, 1985). To ensure that our purified etiolated corn seedling mitochondria prepared according to Forde and Leaver (PNAS 77:418, 1980) were not significantly contaminated by plastids, we treated an aliquot of each sample with 100 uM erythromycin. *In organello* translation products were labelled as previously described (Nebiolo, op. cit.) and subjected to SDS-PAGE/fluorography. Fluorographic profiles of erythromycin-treated and control samples were identical for both control incubation temperature (27C) and heat shock temperature (37C), as well as for mitochondria chemically stressed by 50 uM arsenite treatment. We have concluded that our preparations are not significantly contaminated by plastids and that the 52 kD mitochondrial HSP is not affected by erythromycin treatment. Other controls were run in previous experiments (e.g., measuring amount of bacterial contamination in purified mitochondrial preparations).

We are interested in the potential role of mitochondrial protein synthesis, specifically synthesis of the 52 kD HSP in response to temperature and chemical stress, in seedling growth and seedling thermotolerance. We have grown 3d (27C) corn seedlings (Oh43) for varying lengths of time (24, 48, and 72 hr) in sterile solutions of 100 uM erythromycin, 200 uM erythromycin, 200 uM chloramphenicol (inhibitor of organelle protein synthesis), 10 ug/ml cycloheximide (inhibitor of eukaryotic protein synthesis), and sterile distilled water as a control. Rates of growth, measured as fresh weight/hour of 3d seedlings in the various solutions were all decreased relative to the control. The lowest rate was manifested by seedlings incubated in cycloheximide, the next lowest by 200 and 100 uM erythromycin and the next by chloramphenicol. Similar results were obtained when using 4 and 5d seedlings. Therefore, erythromycin inhibits growth of corn seedlings to an extent greater than chloramphenicol but not as severely as cycloheximide.

To test the effect of erythromycin on the acquisition of thermotolerance (ability to survive an otherwise lethal temperature) we incubated 5d seedlings in the various sterile solutions of erythromycin, chloramphenicol and cycloheximide and at various temperature regimes (27C, control; 45C for 2 hr, lethal treatment; 37C for 2 hr followed by 2 hr at 45C, heat shock and lethal treatment). We found that seedlings in all drugs acquired thermotolerance and growth curves after heat shock were similar to those obtained for controls.

We are investigating the expression of this protein by the mitochondrial genome and its role in the mitochondria during temperature/chemical stress. We have separated membrane and non-membrane fractions of control and heat shocked mitochondria by the method of Boutry et al. (J. Biol. Chem. 258:8524, 1984). By subjecting mitochondrial proteins to SDS-PAGE/fluorography we have localized the 52 kD protein exclusively to the membrane in heat shocked mitochondria. Its role may be to protect membrane components of the respiratory complex from stress. We are currently designing experiments to isolate from the mitochondrial genome the gene coding for the 52 kD protein and to localize the protein in tissue sections using polyclonal antibodies raised against purified protein.

Christine M. Nebiolo and David B. Walden

MILAN, ITALY University of Milan, Ist. Biosintesi Vegetali, C.N.R. Ist. Sper. Cerealicoltura

A cytological approach to the characterization of *dek1*

The embryo-lethal recessive 561 mutant, isolated in our lab following EMS mutagenesis and shown to be allelic to dek1 (W. F. Sheridan, M. T. Chang and M. G. Neuffer, MNL 58:98-99, 1984), is characterized by defects both in embryo and in endosperm development, absence of a correctly differentiated aleurone layer and suppression of both carotenoids and anthocyanins. Here a description is given of the cytology of endosperm and embryo tissues of the mutant dek1.

Embryos and endosperms of four mutant and four normal sib kernels collected 16 days after pollination (DAP), when the mutant is first recognizable, were separately fixed. The procedure followed to obtain cytological preparations was that described by B.-Y. Lin (Stain Technology 52:197-201, 1977) with slight modifications. Dissociation into cells was achieved mechanically by needles and preparations were obtained by pipetting a few drops of the cell suspension onto clean slides warmed on a hot plate. Silver staining (50%AgNO₃ at 60 C) was applied in order to visualize nucleolar structures.

The number of nucleoli per nucleus in normal and mutant kernels is shown in Table 1. The results are strikingly different in the two tissues. In the embryo, in fact, the frequency of cells with two nucleoli in the mutant is significantly lower than that found in non-mutant embryos, the majority of cells being with one nucleolus. In

Table 1. Number of nucleoli/nucleus in embryo and endosperm cells of wild type and mutant at 16 DAP.

Genotype	Frequency number of Embryo	(%)of c nucleo	ells w li in	Endosperm	licated		
	No.cells scored	1	2	No.cells scored	а	2	3
Dek 1	561	54.7	45.3	364	89.0	10.2	0.8
dek 1	341	85.6	14.4	340	92.9	5.6	1.5

Table 2. Nucleolus and nucleus diameters in embryo cells (possessing one nucleolus due to nucleolar fusion) of wild type and mutant at 16 DAP.

Genotype	No. cells scored	Mean nucleolar diameter (µm ± S.E.)	Mean nuclear diameter (µm ± S.E.)	Correlation between nucleolar and nuclear mean diameters (r)
Dek 1	307	4.29 ± 0.05	16.23 1 0.14	0.7504 **
dek 1	292	6.13 ± 0.09	20.91 + 0.18	0.6798**
		1.84**	4.68**	

the endosperm, on the other hand, the distribution of nucleoli among the three frequency classes is apparently equal in both mutant and normal. Keeping in mind that endosperm cells at the time of observation (16 DAP) are no longer dividing, these results suggest a total or partial impairment of mutant embryo tissues to go through active divisions.

Nucleolar and nuclear diameters for both embryo and endosperm were measured by an eye piece micrometer in cells displaying one nucleolus. The data pertaining to embryo measurements (Table 2) indicate a significant increase in size of the mutant vs. normal embryos. Similar conclusions are obtained in endosperm cells (Fig. 1), where a shift of the mutant frequency distribution towards higher values, if compared to the non-mutant values, is observed.

These preliminary data are consistent with the hypothesis of a difference in kinetics of the two cell populations and further studies will be aimed at the elucidation of these aspects.

Silvana Faccio Dolfini

The effect of PEG on pro1 mutant

The role of proline in plant cells and tissues has been the subject of intensive research (Dashek and Erickson, Bot. Rev. 47:349-385, 1981). It has been repeatedly observed that plants accumulate a considerable amount of free proline in response to different biological and environmental stresses. Though the physiological significance of this accumulation is not clear, it has been suggested that it is either a consequence of the stress or alternatively an adaptive response of the plant in terms of survival. It seemed therefore interesting to us to analyze the effect of water stress on *pro1* mutants whose lethality is overcome by growth on media supplied with proline.

PEG (MW 6000) solutions at different concentrations (20%, 30% and 40%) were used to simulate water stress conditions. Intact seedlings (1-2 leaf stage) and leaf discs (5mm) were treated for 24 hours with PEG solutions and then analyzed for their proline and soluble proteins content. For whole seedlings, shoots and roots were analyzed separately. As far as mutants are concerned, care was

Figure 1. Frequency distribution (%) for nucleolar(a) and nuclear(b) diameters in normal and mutant endosperm at 16 DAP. The values indicated represent the class midpoint.

taken to initiate PEG treatment before any sign of lethality due to the proline requirement. The free proline content, in response to PEG treatments, shows a significant increase in shoots and leaf discs but not in roots where the content is unaffected. The threshold of PEG induction (concentration of PEG at which an accumulation of proline begins to take place) is lower in mutants than in normals.

The polypeptide pattern of soluble proteins present in roots seems in agreement with the hypothesis that the mutant is more sensitive to PEG than the control. Both mutant and normal show changes in some polypeptide classes as a consequence of PEG treatments; however, they differ in the PEG concentration required to induce such changes. So mutant roots begin to show modifications in the polypeptide pattern at 20% PEG while normal roots require 30% or 40%.

Chiara Tonelli and Alcide Bertani

The role of *Sn* in the light-regulated activity of enzymes of flavonoid biosynthesis

Sn is a light-regulated factor, closely linked to R, responsible for specific pigmentation of the mesocotyl of the maize seedling. One of the Sn accessions, Sn-bol3, appears to be present in two variants, one producing intense (Sn-s) and the other weak (Sn-w) pigmentation of the seedling tissues. We had previously shown (Gavazzi et al. in Plant Genetics, 1985) that the phenylalanine ammonia-lyase (PAL) and UDP glucose 3-0-glucosyl transferase (UFGT) are related to the Sn genetic constitution. To further analyze the role of Sn on flavonoid biosynthesis, we tested the activity of chalcone synthase (CHS) and chalcone isomerase (CHI), two enzymes involved respectively in the production of naringenin chalcone and in its isomerization to naringenin. The activity was determined on extracts of homozygous Sn-s mesocotyls following different time of irradiation (14000 Lux provided by Power stars -HQ1-T400 W/DV OSRAM lamps).

Increases of CHS and CHI were observed in the Sn-s tissues with a similar time course (Figure 1); the maximum was observed 48 hours after the onset of irradiation,

Figure 1. Time course of anthocyanin formation and CHS and CHI activity as determined in homozygous Sn-s mesocotyls. Time₀ refers to five-day-old seedlings grown in darkness.

which was not coincident with anthocyanin accumulation, still increasing after 72 hours. In the dark both enzymes and pigment do not show any increment. Data in Table 1 show the pigment content and the two enzyme activities Table 1. Effect of C2 and Sn on anthocyanin content and activity of CHS and CHI in seedlings grown in light or in darkness.

Genotype		To			18hD			48hL	
	Anth.	CHS	CHI	Anth.	CHS	CHI	Anth.	CHS	CHI
C2 Sn-s	0.1	49.0	5.6	2.3	35.0	5.6	31.4	105.0	20.8
C2 sn	0.0	1.2	5.6	0.0	0.0	4.0	0.1	11.9	4.0
c2 sn	0.0	0.0	3.2	0.0	0.0	4.0	0.0	0.0	4.0

 T_0 : onset of irradiation, following five days of growth in darkness. 48hD and 48hL: 48 hours of continuous dark or light after T respectively Anthocyanin content is in A_{530} .g⁻¹fr.wt., CHS is in Units .g⁻¹fr.wt., CHI is in ΔA_{385} .min⁻¹.g⁻¹.fr.wt.

1 Unit: 1 pmol malonyl CoA converted into p-coumaroyl CoA-dependent, ethyl acetate extractable products per minute.

determined at the onset of irradiation and after 48 hours of growth in continuous light or darkness. The results indicate that both pigment content and enzyme activities are regulated by light as well as by the Sn genetic constitution. In homozygous c2 sn seedlings (c2 is the gene responsible for CHS activity) there is a complete suppression of pigments and CHS activity while a low but significant level of CHI is still present. This low level of enzyme activity could be accounted for by a residual non-induced activity of CHI or by the existence of two enzymatic forms of CHI, only one of the two being Sn and light dependent.

These observations indicate that the presence of Sn promotes the enzymes tested in a coordinate, lightdependent manner suggesting a transactive regulatory role of this gene on the structural genes (or their products) involved in flavonoid biosynthesis in maize.

G. Consonni, M.L. Racchi, S. Shammah, G.A. Gavazzi

First results on the progeny of regenerated plants

The success obtained in plant regeneration from maize tissue culture by means of organogenesis or somatic embryogenesis and the possibility of obtaining somaclonal variants from regenerated plants stimulated us to test some genetic stocks for regeneration capacity and the obtainment of mutants of somaclonal origin. The genetic constitution of the two stocks used in this study is reported in the Table. The background of the first was originally W23 × K55 and it was reproduced by selfing while the second is an inbred line (A188). Calli induced on Murashige and Skoog medium (1962) were then transferred to regeneration medium, according to a procedure described by Armstrong and Green (1985). The yield of embryogenic calli differed in the two stocks as shown.

Genotype	Origin	Number of embryos explanted	Embryogenic calli (%)	Number of R1 plants
A1 A2 C1 C2 R-g	W23+K55	120	13.5%	180
A1 A2 c1 C2 r-r	A188	140	2.5%	56

Different morphological variants were observed among regenerated (R1) plants, including abnormal leaf and auricle development, white stripes on leaves, and tassel seed. Regenerated plants were often asynchronous in their male and female inflorescence maturation; accordingly they were outcrossed and the progeny grown and selfed. The resulting ears were then scored for appearance of nonparental phenotypes and the results obtained are the following:

Number of R1 plants tested	Number of selfed ears	Ears with nonparental phenotypes					
		dek^*	et*	vp*	ss*		
11	87	7	1	1	3		

*dek: defective kernel; et: etched; vp: viviparous; ss: semisterility.

The frequency of these presumed mutants was in most cases lower than the expected one-quarter except for viviparous, which segregates as a monogenic recessive mutant; one of the seven dek and the three cases of semisterility exhibited a ratio of about 1:1. We are planning to ascertain the genetic basis of these presumed mutants through progeny tests, and to characterize them further in relation to their somaclonal origin.

M.L. Racchi and M. Pontoglio

Physiological components of yield

Rate of photosynthesis is expected to be directly related to yield potential and to be a major physiological component of yield in maize. On the contrary, available information generally shows an absence of association between photosynthetic variability and yield components. In fact the rate of photosynthesis may not be a limiting factor in a non-restrictive environment; moreover the photosynthetic activity must be estimated in a large number of samples with good precision and in the correlation analysis linkage effects must be distinguished from pleiotropic ones.

For these reasons we have analyzed physiological components of maize yield and their relevance by means of an appropriate population structure and by growing plants in normal and restrictive conditions. As regards the population structure, a set of random pure lines was extracted from the BSLE population and tested in 1984. Hybrid combinations were obtained from them according to an incomplete diallel crossing design (circulant diallel) and tested in 1985. In both cases two field conditions were used: normal (spring sowing) and restrictive condition (summer sowing) with light and temperature as a limiting factor in the last part of the vegetative cycle. The rate of photosynthesis was estimated as CER by means of an original apparatus based on ¹⁴CO₂ photosynthetic fixation, that ensures high repeatability of the data in a large number of samples.

The correlation coefficients between CER and yield components were (significant coefficients are underlined):

	Pure	Lines	Hybrids			
	Normal	Stressed	Normal	Stressed		
Yield/plant	0.39	0.41	0.33	0.22		
50-kernel weight	0.05	0.43	0.29	0.18		
Row number	-0.04	0.36	0.07	0.11		
Kernels/row	0.31	0.33	-0.08	0.16		
Stalk diameter	0.18	0.38	0.13	-0.16		
Flowering time	-0.12	0.07	<u>-0.53</u>	-0.58		

The results, interpreted also by means of multivariate statistical techniques, show that, as regards pure lines, CER can be a relevant component of the yield level especially in restrictive conditions. Hybrids are less sensitive to the environmental conditions. For these reasons the relevance of physiological parameters seems to be not independent from the genetic constitution of the material and this fact should be considered in breeding programs based on components of yield.

A. Camussi, E. Ottaviano, B. Basso and E. Pirillo

Gene expression during male gametophyte development

A substantial part of the genome is expressed in the male haploid phase and the gametophytic-sporophytic genetic overlap has been estimated to exceed 60% (M. Sari-Gorla et al., TAG 72:42-47, 1986; P. Willing & J.P. Mascarenhas, Plant Phys. 75:865-868, 1984). However, all the studies have considered only mature pollen as male gametophyte and there is very little data concerning gene expression during microspore development.

In this report seven genes coding for enzymes were analyzed throughout pollen development, from 5 days after meiosis (DAM) to full maturity (anthesis). Six of these enzymes are present in mature pollen. Four (ADH-1, GOT-1, GOT-2, CAT-1) are multimeric and therefore suitable for the detection of the type of expression, haploid or diploid, of their encoding genes (Sari-Gorla et al., 1986). Two (GOT-3 and β -GLU-2) are invariant and possibly monomeric. For these only the onset of enzymatic activity during development was determined. One (β -GLU-1), absent in mature pollen, was included to verify its sporophyte-specificity.

The analysis indicates that: ADH-1 and GOT-2 show haplo-diploid expression from the earliest stages examined. CAT-1 shows haplo-diploid expression only starting 7 DAM. No activity at all could be detected earlier. An additional anodal band showing catalase activity appears in immature microspores only. The electrophoretic mobility and the absence of heterodimers with CAT-1 suggest this isozyme may be CAT-4. For GOT-1, 3 bands typical of sporophytic genetic control appear in the early stages (up to 9 DAM), while the 2-band pattern expected for haploid expression was found from 9 DAM on. GOT-2 and β -GLU-2 were clearly detectable from 5 DAM. β -GLU-1 was absent throughout pollen development, thus confirming its sporophyte-specificity.

On the whole the data indicate that:

- the male gametophyte is genetically largely independent from the sporophyte even in the first stages of development.

- in some cases (GOT-1) a sporophytic control over gametophytic functions may persist at least for the early steps of microspore development.

- some genes appear to be developmentally regulated (CAT-1, CAT-4) in the "pollen formation" phase. This last observation is confirmed by data regarding heat-shock response during microspore development.

Further analyses for a better characterization of the very early stages (0-5 DAM) are in progress.

Carla Frova

HSPs: temporal onset in developing pollen and genetic variability in the sporophyte

In last year's issue we reported evidence of HSP synthesis in immature pollen, 12 days after meiosis. In this note we present data on HSPs induced at different stages of microspore maturation.

Pollen development within the anther was divided into three stages: (A) From meiosis to first mitotic division, (B) First and second mitotic division, and (C) Trinucleate pollen maturation. Each stage was analyzed for HSP synthesis by SDS-PAGE in a gradient 5-20% gel system.

High molecular weight HSPs approximately 84 and 72 Kd are induced in all stages following heat-shock (37 C). Some genotypes show an additional 94 Kd band starting from stage B.

In the 40-69 Kd range two stage-specific HSPs were found: a 46 Kd band appeared only in stage A, while a 66 Kd band is synthesized through stages B and C. These two HSPs are not inducible in sporophytic tissues.

In the low molecular weight range only an 18 Kd HSP was detectable, but the pattern through development is not very clear because overall incorporation of ³⁵S-methionine in immature microspores is low and therefore this non-prominent HSP appears very faint. Further analysis is under way to clarify this point.

The analysis of sporophytic HSPs was continued on additional genotypes. Genetic variability for several HSPs was detected. In particular, a low molecular weight 17 Kd band, additional to the normal HSP pattern, was found in several inbred lines. A preliminary genetic analysis shows that the F1 hs17⁺/hs17⁻ also synthesizes this band.

C. Frova, G. Binelli and E. Ottaviano

Pollen irradiation and gene transfer

The possibility of achieving transfer of one or a few traits from one genotype to another by the use of irradiated pollen was first described by Pandey in Nicotiana (Nature 256:310-313, 1975); however, the subsequent attempts to reproduce the phenomenon in other plants have not been generally successful. In maize, only sublethal doses of radiation can be used for pollen treatment, since no viable seeds are produced at higher doses; in order to study gene transfer in this crop, we utilized a genetic system suitable to distinguish between gene transfer and genetic loss or mutation.

A multiple dominant marker stock was used as pollen source: C Sh Wx Gl15, on chromosome 9; pollen was irradiated with 10, 20, 30, 50 Krad of X-rays and applied to multiple recessive females. The F1 seeds were harvested, scored for endosperm markers, and a sample of each treatment (both normal kernels and with unexpected phenotype) was selfed to observe F2 traits.

The results of pollinations using treated pollen are summarized in Table 1, where, according to each radiation dose, the mean number of kernels per ear, the percentage of sterile or male-sterile plants and the F1 endosperm characters are reported. The F1 generation from irradiated pollen revealed a high proportion of defective endosperm seeds, uncoloured seeds, shrunken seeds and uncoloured shrunken seeds.

Table 1.

RD	KNE	5%	KN	F1 co	seed	chara ed	co	s lorle	SS
				Sh	sh	de	Sh	sh	de
0	89	0	446	446	0	0	0	0	0
10	62	23.3	1233	394	35	451	59	63	231
20	114	8.8	1255	1129	57	0	39	20	10
30	1	-	-	1010000					
50	0	-	-						

RD : Radiation dose

KNE : Kernel number per ear S% : % of sterile or male-sterile plants KN : Number of kernels assayed de: defective endosperm

The F1 flowering plants were 954, from 1358 seeds sowed; the segregation for endosperm and seedling traits was analyzed in detail on a sample of twenty-one ears showing loss of endosperm markers or large segregation distortions. Single plant progenies showed complete loss of dominant allele C in 21 cases out of 843, of Gl allele in one case and of both Wx and C in one case.

When considering single gene segregation in the whole F2 progeny, plants from irradiated pollen revealed phenotypic ratios different from those of the control plants: a highly significant excess of recessive phenotypes was observed for wx, gl and c alleles.

M. Sari Gorla, M. Villa and E. Ottaviano

Are there Mul sequences in B chromosomes?

We have carried out an experiment of in situ hybridization with a Mu sequence (generously provided by V. Walbot). The entire plasmid pAB5 (Taylor et al., Maydica 31:31-45, 1986) containing the internal 650 bp fragment of the Mul element has been cloned in the single EcoRI site of the insertional lambda vector 1149. The entire recombinant phage was labelled by nick-translation with tritiated thymidine to a specific activity of about 20 million dpm per microgram of DNA. In situ hybridization in the presence of dextran sulphate was performed on microsporocytes from several Black Mexican lines containing 4 to 12 B chromosomes. Silver grains on B chromosomes have been observed in the two heterochromatic blocks adjacent to the proximal euchromatic region. Interestingly, the number of silver grains present in B chromosomes of the same microsporocytes varied from zero to ten. This suggests that sequences related to the Mu element preferentially accumulate in the same chromosomal region. Few silver grains were also observed in the A chromosome region, but there was no evidence of induction of mutable alleles in the self progeny of these $A \ C \ R \ Su$ Black Mexican lines. However, when they were crossed as male parents with stocks recessive for endosperm marker genes, kernels with purple spots or coloured-purple kernels with su sectors were observed.

A. Viotti, L. Bernard and N.E. Pogna

A role for DNA methylation in the tissue-specific expression of maize genes?

Using Southern analysis of genomic DNA, digested with methylation-sensitive restriction enzymes, we investigated the methylation state of three families of storage protein genes in the following tissues and organs of inbred line W64A: endosperm at 8 days after pollination (dap), endosperm at 22 dap (w.t. and homozygous for opaque-2), three day etiolated shoot, three day root, immature ear (4 centimeters long) and mature pollen. We used as probes fragments of a cluster of zein genes coding for 22 kd polypeptides, an opaque-2 dependent cDNA clone coding for a 27 kd zein, and a novel cDNA clone related in sequence to a RSP gene. The transcripts of these genes were detected by Slot Dot analysis of total or polyadenylated RNAs (detection threshold: approx. 0.0004% of total RNA) only in the endosperm cells, but not yet at 8 dap, an early and for most aspects undifferentiated stage of development. The DNA of zein and RSP-related genes (coding regions and surrounding sequences) was found to be extensively

undermethylated in the endosperm, while we observed a single, more methylated pattern in the other tissues. Data on pollen DNA obtained with the 27 kd zein clone revealed a similarly methylated pattern. At 8 dap, the demethylated pattern is already and completely established, indicating that DNA demethylation precedes and is not necessarily coupled with the active transcription of these genes. In agreement with these data, we found the demethylated pattern of the 27 kd zein sequences in the 22 dap opaque-2 endosperm as well, where the level of the corresponding transcripts is significantly reduced. The 5-methyl cytosine content of endosperm DNA is not significantly different from that of DNA from the immature ear, as assessed by HPLC analysis, or from that of DNA from the other tissues, as assessed by comparison between ethidium bromide stained or end-labelled digests. Moreover, hybridization experiments with a sequence abundantly represented in root and endosperm RNA, revealed very similar methylation patterns in the two tissues.

Michele W. Bianchi and Angelo Viotti

MILAN, ITALY Ist. Biosintesi Vegetali, C.N.R. BERGAMO, ITALY Ist. Sperimentale Cerealicoltura

Absence of restoration of *o6 (pro1)* endosperms with proline

Last year (C. Tonelli et al., MNL 60:100) we reported that the *pro1* mutant is functionally allelic to *o6*; accordingly, *o6* seedlings recover when supplemented with 1-proline in the growing medium.

This summer we tested the effect of l-proline on young developing o6 endosperms. On account of the relationship between o2 and o6 (both repress zein accumulation and suppress or reduce b32 protein in the endosperm: L. Manzocchi et al., TAG 72:778-781, 1986), we also included o2 developing endosperms in the test.

A69Y normal, o2 and +/o6 plants were selfed, and the endosperms were collected ten days after pollination and cultivated in vitro. Ears segregating + and o6 seeds were recognized by leaving half of the ear on the plant till maturation and saving the results only for those endosperms deriving from segregating ears. The endosperms were cultivated on agar medium with MS salts, sucrose (3%), asparagine (0.2%) and in the presence or absence of 2 mM 1-proline. After 6 days at 26 C, the fresh and dry weight and the content of salt and ethanol soluble proteins were determined. In addition, total proteins were analyzed by SDS-PAGE on pooled normal and o2 endosperms, and on individual endosperms in +/o6.

Presence or absence of proline did not affect the growth of the endosperms, which was about ten-fold the original weight. In the absence of proline, wildtype endosperms accumulated large amounts of zeins, while in o2 zeins were drastically reduced; endosperms from $\pm/o6$ plants segregated, as expected, high zein/low zein phenotypes, as judged by their electrophoretic patterns. In the presence of proline, essentially the same results were obtained, in particular for the endosperms from $\pm/o6$ plants, where a segregation for high/low zein phenotypes was still observed.

The results suggest that in our culture conditions 2 mM l-proline (a concentration restoring a normal pheno-

type in o6 seedlings) does not promote restoration of o6 endosperms.

Lucia A. Manzocchi and Carlo Soave

NASHVILLE, TENNESSEE Vanderbilt University

Inheritance of knob heterochromatin

In higher plants, tandemly repeated DNA sequences appear as distinct, heteropycnotic regions located at certain sites on specific chromosomes and look much like beads on a string. They are called knobs by maize cytogeneticists. The genetic effects of knobs in maize include: (1) increased recombination (McClintock, CIW Yearbook 42:148-152, 1943; Rhoades and Dempsey, Genetics 53:989-1020, 1967); (2) neocentromere activity (Rhoades and Vilkomerson, PNAS 28:433-436, 1942); (3) preferential segregation (Longley, Genetics 30:100-113, 1945; Dempsey and Rhoades, MNL 44:56-61, 1970); (4) chromosome breakage and chromatin loss (Rhoades et al., PNAS 57:1626-1632, 1967; Rhoades and Dempsey, MNL 46:48-51, 1972); (5) sex differences in recombination (Rhoades, J. Amer. Soc. Agron. 33:603-615, 1941; Phillips, MNL 45:123-125, 1971).

In wild plants, knobs are typically telomeric; whereas, in cultivated species, they move to internal positions on chromosomes. In maize and annual teosinte, approximately 23 intercalary knob positions have been identified. In diploid perennial teosinte, Zea diploperennis, and Guatemalan teosinte, the knobs are telomeric. A cytological study of knobs in F1 progeny of crosses using maize as the pollen parent and *diploperennis* as the female parent demonstrated that the number of terminal knob sites is less than would be expected in Mendelian inheritance, and the number of intercalary knobs is above that expected to be inherited from the male maize parent (Eubanks, MNL 60:103, 1986). The phenomenon of knob transposition and chromosome reorganization as a result of interspecific hybridization is suggested by these data. It contrasts with the basic assumption in maize cytogenetics that knobs, like mutant genes, are stable, heritable characters. Evidence from a recent study of crosses between diploperennis and annual teosinte indicates that the number of knobs in the F1 progeny is dependent upon the direction of the cross.

Annual teosinte plant material for the experiment was grown from seed provided by the Southern Regional Plant Introduction Station, Experiment, Georgia (Zea mexicana, PI. # 331779, origin: Miraflores, Mexico), and diploperennis plants were grown from seed provided by Professor Hugh Iltis at the University of Wisconsin-Madison (Zea diploperennis, Guzman # 777, origin: Jalisco, Mexico). The first phase of the research was carried out at Indiana University in Bloomington in 1985, and the second phase at Vanderbilt University in Nashville in 1986. The cross was made both ways with each species serving as male and female parent. Sporocytes from individual parent plants and their F1 progeny were collected and examined cytologically. The number of knobs observed at pachytene was recorded (Table 1).

The *diploperennis* parent had 6 small terminal knobs. The annual teosinte parent had 4 intercalary knobs. If

Table 1. Chromosome knob number in annual teosinte, *diploperennis* and F1 hybrids.

Plant	Collection	Knob number
Zea diploperennis (2A, 2-5)	Guzman # 777, Jalisco	6
Zea mexicana (22)	P.I. # 331779, Miraflores	4
F1 hybrids		
$2A \times 22$		14
22×2.5		3

knobs are inherited in accordance with Mendelian genetics, the number of knobs in the F1 progeny should range from a minimum number of 4 to a maximum number of 10. Interestingly, however, when annual teosinte was the female parent, only 3 knobs were observed on the chromosomes of the F1 progeny. This is 1 knob less than would be expected of the minimum number. These plants had a 25% germination rate, were weak, spindly and male sterile. When annual teosinte was the male parent, 14 knobs were observed, 4 above the predicted maximum number. These plants had a 75% germination rate, were vigorous, highly tillered and male fertile.

These results raise three questions. I. Do the knob data reveal an amplification of repetitive DNA in some crosses and a loss of knob heterochromatin in other crosses when the sexes of the parent plants are reversed? II. Is there transposition of knob heterochromatin in progeny of interspecific crosses? III. Is knob satellite DNA genetically inert or is it transcribed and does it play a role in gene regulation? More work on the inheritance and expression of knob heterochromatin is needed to gain a better understanding of its genetic functions and evolutionary role in the origin of maize.

Mary Eubanks

NORMAL, ILLINOIS Illinois State University

A new, improved FPG technique for detecting sister-chromatid exchanges in mitotic chromosomes

We have reported a fluorescence-plus-Giemsa (FPG) technique for visualizing sister-chromatid exchanges (SCE's) in maize mitotic chromosomes utilizing 5-bromodeoxyuridine (MNL 54:88-89, 1980). Recently, certain modifications of the maize FPG technique have been developed. The modifications involved pectinase concentration and treatment time, the concentration of Hoechst 33258 stain, and the temperature during the post-stain treatment.

In the previously described procedures, the pectinase concentration was 0.5% and the treatment time was 1 hr. Under this treatment condition, root tips were still relatively hard. After maceration by a glass rod, many metaphase cells were broken. The broken cells may be the cause of chromosome loss during the later slide preparation procedures. Softening the root tips by pectinase treatment may increase the percentage of intact cells after slide preparation. For this reason, various enzyme concentrations and treatment times were tested. When the pectinase concentration was 1.5% and the treatment time was 2 hrs., the root tips were soft enough to be smashed with a dissecting needle. Then, cells were gently macerated with a glass rod and flattened by placing a cover glass on the suspension and pressing on it. After these treatments, many intact metaphase cells were observed. Intact or slightly damaged cells had a better chance of staying on a slide than chromosomes from ruptured cells during the treatments required to demonstrate sister chromatid differentiation. Goto et al. (Chromosoma 66:351-359, 1978) suggested a practical concentration of 10^{-5} M of Hoechst 33258 to detect SCEs in rat bone marrow cells. This is ten times higher than the concentration we reported previously. To make the 10^{-5} M Hoechst 33258 solution, 1 mg of Hoechst 33258 was dissolved in 1 ml of 100% ethanol, and 1 ml of this solution was added to 200 ml of $0.5 \times$ SSC.

Another factor that affects the success of the sisterchromatid differentiation is the temperature during the UV exposure. In our previous report, the experiments were performed at room temperature. However, the temperature in the laboratory fluctuated during the day and between seasons. In our modified procedure, slides were placed on a slide warmer and this kept the temperature at 45 C during UV exposure.

The rest of the slide preparation procedures were the same as previously described. A far higher percentage (20-40 times as many) of the cells treated with this improved protocol, showed a better sister-chromatid differentiation than with the protocol initially developed.

Tau-San Chou and David Weber

NORTHFIELD, MINNESOTA Carleton College

Dosage analysis of the D8 allele for dwarfism

The D8 locus, which is on the long arm of chromosome 1, has an additive effect on the stature of plants. Selfing a known heterozygote produces a ratio of 1 normal (+/+): 2 dwarf (D8/+): 1 mini-dwarf (D8/D8). The D8/+ dwarfs are generally less than $\frac{1}{4}$ the height of normal (+/+) sibs. Likewise, mini-dwarfs are about $\frac{2}{3}$ the size of dwarfs. Unfortunately, mini-dwarfs fail to set seed or produce viable pollen.

In order to study the nature of the D8 allele, D8/+ plants were pollinated by TB-1La hyperploid translocation heterozygotes. Table 1 shows the expected genotypes and chromosome numbers of the progeny of this cross. Half of the progeny are expected to contain the D8 allele in the presence of 0, 1, or 2 doses of the normal (+) allele.

Table	1.	E	spe	cted	ge	notypes	of	progeny	from	the	cro	SS
D 8/+	×	1	1 ^B	\mathbf{B}^{1}	$\tilde{\mathbf{B}^1}$	(+/+/+).	Chromoso	ome i	numb	er	in
paren	the	se	s.									

					Sper	m Nuclei			
			1	1 ^B B	L	1 ^B B ¹ E	31	11	3
	+	+/+	(20)	+/+	(21)	+/+/+	(22)	+/-	(20)
Egg Nuc1	DB	D8/+	(20)	D8/+	(21)	D8/+/+	(22)	D8/-	(20)

All progeny kernels were from one ear and when planted were separated into two groups. One group consisted of very small kernels and should contain mainly hyperploid embryos (Roman and Ullstrup, Agron. J. 43:450-454, 1951). Approximately half of these should be D8/+/+ genotype and will provide the opportunity to study the influence of the D8 allele in the presence of two normal alleles. The other group consisted of the largest kernels and should contain some hypoploid plants, half of which should be D8/- genotype. The +/- hypoploids also are reduced in stature (about half the size of +/+ sibs) and are easily distinguishable from D8 dwarfs, not only due to their greater height, but also due to their narrow, stiff, pointed leaves. All kernels were planted in early spring in peat pellets in the greenhouse in order to facilitate root-tip collection. They were subsequently transplanted to the field. Table 2 lists the phenotypes and probable genotypes of all plants for which root-tips were successfully analyzed cytologically.

Table 2. Phenotypic and genotypic classifications of cytologically analyzed progeny from the cross $D8/+ \times 11^{B} B^{1} B^{1} (+/+/+)$.

Chromosome #	Phenotype	<pre> f of Plants </pre>	Genotype	
20	narrow-leaf pygmy	5	+/-	
20	stunted narrow-leaf pygmy	2	D8/-	
20	dwarf	8	D8/+	
21	normal	5	+/+	
22	normal	14	+/+/+	
22	dwarf	9	D8/+/+	

It is interesting to note that two expected classes are conspicuously missing. Normal (+/+) plants with 20 normal chromosomes and normal (+/+) plants with 21 chromosomes $(1 \ 1^B \ B^1)$ do not appear in the progeny. This may be due to the kernel size selection that was performed. An earlier planting of kernels from a different ear of the same cross $(D8/+ \times \text{TB-1La hyperploid})$ on which the kernels were not as easy to separate into large and small classes produced several normal plants with 20 or 21 chromosomes.

Most importantly, the data show that D8 is a mutation which causes a gain in function. Nine plants were D8/+/+and had a dwarf phenotype indistinguishable from D8/+dwarfs. Also two plants with 20 chromosomes exhibited a very interesting phenotype. They displayed the hypoploid phenotype (stiff, narrow leaves) yet were only 6 inches tall due to very short internodes. In other words, they were essentially dwarf hypoploids (D8/-). Thus, it appears that the D8 allele has a dwarfing effect in the presence of 0, 1, or 2 normal (+) alleles.

Rick W. Staub and Patricia M. Laurenson

Consistent nondisjunction of B chromosomes in Black Mexican

In reviewing cytological data from crosses in which Black Mexican sweet corn with B chromosomes (BMSC-B) was used as the pollen parent on females lacking B chromosomes, it was observed that the number of B chromosomes in the progeny was almost always even. In fact, of 223 plants from this type of cross, root-tip cytology has revealed that all but four possessed an even number of B chromosomes. Plant RS1044 had 3 B chromosomes and was from a $0B \times 9B$ cross. Plant 86.C10.12 had 9 B's and was from a cross in which the female had no B's and the male had at least 9 B's. Plant 85.103.6 was a 1B/2B chimera (i.e., half 1B and half 2B nuclei in one root-tip) and was from a $0B \times 6B$ cross. Plant 86.C6.11 was from a cross of a female with no B's and a male with at least 7 B's. It was analyzed as having 3 B's, but this was after it had been noticed that most plants from crosses of this type possess an even number of B's. Two more root-tips were analyzed and both were found to have 2 B's.

The cytological data from plants 85.103.6 and 86.C10.12 indicate that B chromosomes may display a low degree of instability in the course of development. That this

instability, if it does exist, occurs at a low level is indicated also by comparison of mitotic and meiotic chromosome counts that were performed on 34 plants containing varying numbers of B chromosomes. Of these, only one displayed discordant numbers of B chromosomes in the two analyses. Plant RS650 had 2 B's in root-tip cells and only 1 B in pollen mother cells.

Therefore, it is possible that nondisjunction of all B chromosomes at the second pollen mitosis occurs 100% of the time and that plants containing an odd number of B chromosomes from $0B \times B$ crosses actually represent subsequent instability of B chromosomes in somatic cell divisions. Alternatively, it is possible that, rarely, B chromosomes do undergo normal disjunction in the second pollen mitosis. If this is true, it seems to occur only when the plant possesses a very high number of B chromosomes (at least 9 B's in the two cases presented here).

Thus, it seems quite possible that nondisjunction of B chromosomes at the second pollen mitosis may occur 100% of the time in Black Mexican sweet corn. Utilization of plants with low numbers of B's should virtually guarantee production of male gametes with even numbers of B chromosomes in this inbred line.

In order to study the nature of the influence of genetic background on B chromosome nondisjunction, crosses of BMSC-B to other inbred lines must be made. Preliminary cytological data from A632/BMSC-B hybrids used as pollen sources on 0B plants show 4 progeny with odd B chromosome number out of a total of 21 progeny analyzed. This indicates that the B chromosome nondisjunction rate is a maximum of 81%. Thus, it appears that A632 does not have the proper genetic constitution to support consistent nondisjunction of B chromosomes.

It is interesting to note that early cytological studies of progeny from $0B \times B$ crosses show highly variable amounts of B chromosome nondisjunction (A.E. Longley, J. Agric. Res. 34:769-784, 1927; L.F. Randolph, Genetics 26:608-631, 1941; M. Blackwood, Heredity 10:353-366, 1956). However, none of these researchers used inbred lines, and in fact often intercrossed stocks to utilize hybrid vigor in maintaining B chromosomes. The only case of 100% nondisjunction reported was found by Randolph when he crossed 0B females and 2B males. In the progeny of this cross he obtained 22 0B, 37 2B, and 2 4B progeny. In all other 0B \times B crosses, however, he obtained several progeny with odd B chromosome numbers. His sources of B chromosomes were Black Mexican and Golden Bantam varieties of sweet corn. It is possible that in this particular cross, the 2B plant(s) used as the male was from a Black Mexican inbred line.

It seems quite probable that the genetic constitution of plants containing B chromosomes will have a strong influence on the rate of B chromosome nondisjunction. For example, genes that shorten the duration of the division of the generative nucleus or lengthen the duration of replication of centromeric heterochromatin may have a strong positive influence on B chromosome nondisjunction. At any rate, BMSC-B can be used as a pollen source in crosses with 0B plants to assure nearly all progeny will have even numbers of B's. Likewise, if B-A translocations are maintained in a Black Mexican background, the proportions of hypo- and hyperploid progeny could be maximized.

Rick W. Staub and Patricia M. Laurenson

OAKLAND, CALIFORNIA Advanced Genetic Sciences

Corrections in the nucleotide sequence of Activator (Ac)

In the process of characterizing the Ac element present in the bz-s:2114(Ac) allele, we have discovered two mistakes in the published Ac sequence (R. F. Pohlman, N.V. Fedoroff and J. Messing, Cell 37:635, 1984; M. Mueller-Neumann, J. I. Yoder and P. Starlinger, Mol. Gen. Genet. 198:19, 1984). bz-s:2114(Ac) is a derivative of bz-m2(Ac), which has a deletion adjacent to Ac (H. Dooner, Plant Genetics, p. 561, 1985). We have cloned both alleles and in restriction mapping we found an MluI site that was not predicted by the published sequence. The site was also present in bz-m2(Ac) and wx-m7(Ac) (pJAC, kindly supplied by J. I. Yoder and P. Starlinger). BamHI-MluI fragments from bz-s:2114(Ac), bz-m2(Ac) and wx-m7(Ac) were filled in with Klenow, subcloned into M13mp18 in both orientations and sequenced. This sequencing confirmed that the MluI site in all three Acs resulted from an additional A residue at base pair (bp) 4132. We also found an additional C residue at bp 4225. The additional A residue at 4132 alters ORF 3 by making it 9 bp (three codons) longer, terminating at 4202. Between this and other work (H. Dooner, J. English, E. Ralston, and E. Weck, 1986, Science 234:210), we have sequenced 2300 bp of Ac (see figure) and have confirmed all but the two

Figure 1. Restriction map of the transposable element Ac with the regions that we have sequenced underlined.

missed nucleotides described above. With the addition of two base pairs, the length of Ac is at least 4565 bp.

James English, Edward Ralston and Hugo Dooner

PALO ALTO, CALIFORNIA Sungene Technologies Corporation

Mutagenesis of tissue cultures

Spontaneous variation found in regenerated plants has been termed "somaclonal variation" and is a common phenomenon in plants. We have been intending to enhance the variation in several elite corn inbred lines through the application of mutagens to maize tissue cultures using EMS, sodium azide, UV-light, X-ray and others. Friable, embryogenic calli of A619, B73 and Mo17 were initiated from immature embryos on MS medium supplemented with either 2,4-D (1.5-4 mg/l) or dicamba (1-8 mg/l), and maintained on the same medium plus proline (10-40 mM) and casein hydrolysate (100-500 mg/l) with a subculture interval of 10 to 14 days. These calli have been maintained for more than ten months.

EMS treatment: A619, B73 and Mo17 embryogenic calli were dispersed in liquid MS medium prior to EMS treatment. EMS concentrations of 0.1 to 0.2% (v/v) were

applied to the calli for one to four hours. The treated calli were washed three times with fresh liquid medium. Percent survival was assessed under a dissecting microscope. An evaluation of EMS concentration and treatment duration was conducted for B73 only (Fig. 1). It appeared that

the percent survival of B73 callus decreases with increasing EMS concentration and treatment duration, and that 0.2% EMS was the most appropriate concentration for maize tissue culture. Therefore, 0.2% EMS was applied to A619 and Mo17 calli (Fig. 2). The results also indicated

Figure 2. Response of A619, B73 and Mo17 to 0.2% EMS treatment. Each point represents the mean of three replications.

that an EMS treatment duration of one to two hours is suitable for maize tissue culture. The sensitivity of maize calli to EMS differed among the genotypes and cell lines within a particular genotype. Mo17 callus was more sensitive to EMS treatment than A619 and B73. Regeneration of the treated calli is under way.

Sodium azide treatment: A619, B73 and Mo17 embryogenic calli were dispersed in sterilized 0.1 M phosphate buffer at pH 3.0 with or without added azide. After treatment, calli were washed with liquid MS medium and transferred to maintenance medium. The effect of azide concentration and treatment duration on B73 callus is shown in Figs. 3 and 4. Percent survival decreased with increasing azide concentration and treatment duration. Less than 5% survival was observed in B73 and Mo17 calli

Figure 3. Effect of sodium azide concentration and treatment duration on B73 callus. Each value represents the average of six determinations.

Figure 4. Effect of sodium azide (2 mM) and phosphate buffer on Mo17 and B73 calli. Each value represents the average of two replications.

treated with 2 mM azide for longer than one hour. Phosphate buffer alone seemed to slightly reduce survival of B73 and Mo17 calli. Sensitivity of maize callus to azide was similar to EMS treatment; i.e., it was genotype and cell line dependent, and Mo17 callus was less sensitive to azide than A619 and B73.

A total of 83 R0 plants were regenerated from B73 calli treated either with azide or phosphate buffer alone and grown to maturity in a greenhouse. A hand microscope (Nikken, Tokyo) was used to determine pollen sterility. R0 regenerants with at least 5% pollen sterility were recorded (Table 1). The results indicated that the frequency of R0 regenerants with pollen sterility is higher for those plants from calli treated with either sodium azide or phosphate buffer alone than those plants from control calli. A total of 63 R0 plants produced enough seed (at least 15 seeds) for evaluation of variant segregation in R1 progeny tests. Chlorophyll variants were predominant, although other variants such as a white kernel mutant and some with altered vigor and earliness were also observed among the R1 progenies. R0 regenerants derived from calli treated with phosphate buffer alone produced as many variants as those from azide treated calli, and the frequency of variants from both treatments was higher than the control (Table 1). Therefore, it is not clear if a low pH value (pH 3.0), phosphate buffer, or sodium azide cause pollen sterility and mutation in the R0 regenerants.

Table 1. Effect of phosphate buffer and sodium azide on B73 callus.

Treatment	Treatment time (min)	% R ₀ pl pollen	ants with sterility ^a	in R _O	variants population
1 mM NaN ₃	10	41 (9/22)	36	(8/22)
2 mM NaN3	10	33 (2/6)	20	(1/5)
1 mM NaNa	20	63 (5/8)	57	(4/7)
2 mM NaN ₃	20	30 (9/30)	72	(18/25)
1 mM NaN ₃	30	0 (0/1)	100	(1/1)
2 mM NaN3	30	44 (4/9)	100	(3/3)
PO4 buffer	20	60 (6/10)	75	(3/4)
PO4 buffer	30	50 (5/10)	100	(2/2)
Control	0	29 (51/183)	17	(24/138)

a. Number of ${\rm R}_0$ plants with at least 5% pollen sterility/total number of ${\rm R}_0$ plants.

b. Number of variant $R_{\rm O}$ plants / total number of $R_{\rm O}$ plants.

UV irradiation: Prior to irradiation, B73 friable, embryogenic callus was dispersed in liquid MS medium and forced through a 600 µm screen. Cell clumps smaller than 600 µm were evenly spread on MS solid medium and irradiated with UV for 0.5 to 8 hours. A 15-W General Electric germicidal lamp emitting at approximately 2600 A with an energy output of 25 ergs/mm²/sec was used. The results indicated that percent survival of the irradiated callus decreased with increasing UV doses (Fig. 5). Calli irradiated with UV longer than 3 minutes became watery and died one month after irradiation. To date, only a few plants have been regenerated, and one yellow-green variant and one dwarf variant were detected in R1 progeny rows. The progenies segregated 3:1 for the respective characteristics indicating a single recessive mutation. Large-scale plant regeneration is under way.

Figure 5. Effect of UV irradiation on B73 friable, embryogenic callus. Each value represents the average of two separate experiments, each experiment consists of at least three replications.

X-ray irradiation (in collaboration with David Cheng and Tracy Yang): Macerated B73 friable embryogenic callus (smaller than 400 μ m in diameter) was uniformly spread over a 60 \times 20 mm petri dish containing 25 ml of maintenance medium and irradiated with 11 doses (0 to 8.4 kilorads (kR)) of X-ray. Calli irradiated with doses higher than 2.7 kR died one month after irradiation. Three irradiated calli (0.8, 1.3 and 2.7 kR) showed significant increases in growth rate, and one (0.8 kR) showed an increase in embryogenic activity six months after irradiation.

A total of 230 R0 plants were regenerated for evaluation. Pollen fertility and seed set decreased with increasing X-ray dosage (Table 2). Of 230 R0 plants, 83 produced enough seeds (at least 15 seeds) for evaluation of mutant

82

segregation in R1 progeny tests. The mutation rate increased with higher doses of X-ray.

Table 2. Effect of X-ray irradiation on pollen fertility and mutation rate of B73 regenerants.

X-ray dose (kR)	0	0.2	0.4	0.6	0.8	1,0	1.3	2.7	4.0	
<pre>% plants w/ above 5% sterile pollen</pre>	20	55	25	100	98	73	100	100	100	
Mutation rate (%)	9	33	55	120	70	86	100	100		

Traits such as virescence, defective kernel, striate, white seedling, zebra band, viviparous, wilted, shrunken endosperm and vigorous plants have been observed in R1 progeny rows. Most of the variants segregated 3:1 for the respective traits, indicating a single recessive mutation. The degree of chromosomal alteration increased with X-ray dosage. Several sporocytes were collected and analysed. A deficiency of the proximal portion of the long arm of the chromosome, a trisomic-7, and translocations involving two or three chromosomes have been detected.

A.S. Wang, M.D. Hollingworth and J.B. Milcic

Inheritance of the culture induction response

The induction of somatic embryogenesis and subsequent plant regeneration in maize can be achieved with many inbred lines, although a number of elite inbreds show poor response in vitro. By manipulation of the callus induction medium, it was found that the embryogenesis induction response is largely a physiological phenomenon; a change in the concentration or molecular configuration of the plant growth regulator (PGR) dramatically altered the response of each inbred examined.

Immature embryos from the inbreds B73 and MS71, reciprocal crosses between B73 and MS71 (F1), and selfpollinations of the hybrids derived from these crosses (F2) were isolated when they had attained a length of 1.2-1.8 mm. All culture induction media contained N6 salts, 9% sucrose, and 0.1 to 100 µM of 2-, 3-, or 4-chlorophenoxyacetic acid (CPA). Cultures were scored for embryo formation after three weeks. Treatments which were scored with a "±" (Table 1) produced embryoids at frequencies occasionally approaching those scored with a "+" (optimum induction frequency and growth of embryogenic tissue), but either the growth of the tissue was slow (at concentrations above the optimum) or the concentration of the PGR was high enough only to induce embryoid-like structures in a few isolated cases (at concentrations below the optimum). Treatments scored with a "-" indicate either germination of the immature embryos (concentrations below the optimum) or tissue necrosis with little or no detectable growth (concentrations above the optimum).

Each form of CPA elicited a similar concentrationdependent response. At low concentrations, the scutellum swelled slightly but did not form embryoids. Embryoids formed from the scutellum when the concentration was increased, and a further increase in concentration resulted in toxicity. While each inbred showed a similar overall response pattern, the relative sensitivity of each to different concentrations of the three forms of CPA differed between genotypes. This was particularly evident in the comparison of B73 (a BSSS derivative) and MS71 (an A619 derivative). B73 showed a greater sensitivity than MS71 in response to each concentration of each form of CPA.

Reciprocal crosses between these two inbreds sometimes showed a similar response pattern to that of the maternal parent of the cross, as was especially evident in the case of $MS71 \times B73$. Comparison of the F2 generation embryos showed essentially no difference in sensitivity to

MS71					<u>B73</u>				
	CONC., µM	2-CL	3-CL	4-CL		CONC., µM	2-CL	3-CL	4-CL
	0.1	2	-	14		0.1	-	-	±
	1.0	-	-	+		1.0	±	+	+
	10.0	-	+	±		10.0	+	+	-
	100.0	+	±			_100.0	±	÷	-
(MS71 x B73)					(B73 x MS71)				
	CONC., µM	2-CL	<u>3-CL</u>	4-CL		CONC., µM	2-CL	3-CL	4-0
	0.1	-	-	-		0.1	-	-	-
	1.0	-	-	+		1.0	-	±	+
	10.0	-	+	±		10.0	±	+	-
	100.0	+	<i></i>			100,0	+		-
(MS71 x B73)x					(B73 x MS71)x				
	CONC., µM	2-CL	3-CL	4-CL		CONC., µM	2-CL	3-CL	4-CI
	0.1	-	цаў. П	(i)		0,1	-	-	-
	1.0	-	-	+		1.0	-	-	+
	10.0	÷	+	-		10.0	-	+	-
	100.0	+	4	12		100.0	+	-	14

Table 1. Embryogenesis induction by substituted phenoxyacetic acids in B73, MS71 and the F1 and F2 generations of reciprocal crosses.

+ OPTIMUM CONCENTRATION FOR CALLUS INDUCTION OF THOSE TESTED.

MON-OPTIMUM CONCENTRATION; SPORADIC EMBRYOID FORMATION OBSERVED IN SOME REPLICATES (CONCENTRATIONS BELOW THE OPTIMUM) OR POOR TISSUE GROWTH (CONCENTRATIONS ABOVE THE OPTIMUM),

NO FORMATION OF EMBRYOGENIC TISSUE IN ANY CASES,

Table 2. Embryogenesis induction by substituted phenoxyacetic acids in the F2 generation of reciprocal crosses between B73 and MS71.

PHENOXYACETIC ACID

		2-CL			3-CL	4-CL		
GENOTYPE	CONC µM	N	FREQ. (%)	N	FREQ, (%)	N	FREQ. (%)	
(MS71 x B73)x	0.1	180	0	180	0.6	180	1.1	
	1.0	180	0.6	180	2.2	180	91.1	
	10.0	180	17.8	180	77.2	180	32.8	
	100.0	180	81.7	180	0	180	0	
(B73 x MS71)x	0.1	162	0	186	0	156	0	
	1.0	162	0	166	4.8	164	92.7	
	10.0	158	29,1	166	89.2	152	25.7	
	100.0	162	89,5	166	0	161	0	

the PGRs. In addition, the response tended to be uniform for all embryos in each petri dish; there was no evident Mendelian segregation as would have been expected for nuclear genes (Table 2). The case where partial response was seen (at concentrations just above or below the optimum concentration) appeared to be physiological in nature—swelling of the scutellum with no embryoid formation at lower concentrations and toxicity at higher levels. In these instances, any induction of embryogenesis was sporadic and occurred at a low frequency.

These results indicate that the induction in vitro of somatic embryogenesis in maize is greatly influenced by the concentration and molecular structure of a given PGR and, under the appropriate conditions, can be achieved at relatively high frequencies independent of the genetic background of the explant tissue. Despite the similarity of the response of F1 hybrids to that of the maternal parent of each hybrid in many cases, it is unclear whether the inheritance of culture response is controlled by cytoplasmic genes. Further, the lack of well-defined segregation ratios in the F2 generation indicates a complex mode of inheritance.

K. Close and L. Ludeman

PHILADELPHIA, PENNSYLVANIA University of Pennsylvania

Tp1 is not cell-autonomous

Tp1 is a dominant homeotic mutation whose most conspicuous phenotype is the production of leaves or leaf-like structures in the ear and the tassel. This phenotype could result from a defect in supra-cellular factor(s) that initiate or suppress leaf development, or a defect in the ability to respond to such factor(s). Mutations that affect these two systems can be differentiated by examining their expression in genetic mosaics. Mutations that affect supra-cellular (i.e., diffusible) factors are likely to be non-cell-autonomous, whereas those that affect the ability of cells to respond to such factors are likely to be expressed in a cell-autonomous fashion.

Seeds of the genotype + Tp1/o5-1241 + were irradiated (1 Krad, 250 KV, 15 mA, 2 mm Al) 24 hours after imbibition, grown to maturity, and then screened for sectors expressing the pale yellow phenotype of o5-1241. The o5 locus is located about 10 map units proximal to Tp1. Thus, cells expressing o5-1241 have a high probability of being hemizygous for the wild type allele of Tp1 because terminal deletions that result in the loss of $o5^+$ will also

remove Tp1. Although some sectors may result from interstitial deletions that remove $o5^+$ but not Tp1, such deletions require 2 chromosome breaks and are therefore much less frequent than terminal deletions, which arise from single breaks.

Seventeen plants with o5-1241 tassel sectors, 9 plants with ear sectors and 15 plants with tiller sectors were found in a total of 1660 plants. Sectors only encompassed about $\frac{1}{20}$ to $\frac{1}{10}$ of the circumference of the tassel, but generally occupied a much larger fraction, if not the entire circumference, of an ear or tiller. All but 2 of the tassel sectors extended from the tassel into the vegetative part of the shoot. Tiller and ear sectors generally encompassed all the nodes in these structures.

The feature of primary interest in this experiment was the phenotype of sectors in the tassel and ear, in particular the presence or absence of spathes subtending spikelets. With one exception, all of the sectors in either of these inflorescences had a Tp1 phenotype indistinguishable from that of surrounding tissue. In the exceptional case, spikelets within the sector were normal in appearance (i.e., lacked spathes). However, because other non-sectored regions of the tassel also had a normal phenotype, it is unclear whether to attribute the phenotype of this o5-1241 sector to its $Tp1^+$ genotype, or to the poor expression of Tp1 in surrounding tissue.

Twenty-two of the sectors we observed were located in the L1 layer of the meristem and 15 were located in the L2 layer. The location of the remaining 4 sectors was not determined. Although cells from one of these lineages may replace cells from the other lineage, this usually only occurs during leaf development, not during the growth of the shoot meristem. Thus most of the structures containing o5-1241 sectors also possessed an epidermis or some sub-epidermal tissue that still carried Tp1. In 2 cases, however, spathes arose in regions of the shoot in which o5-1241 cells in the L1 had displaced L2 cells so that all the tissue in these spathes was genetically o5-1241.

These results strongly suggest that Tp1 is not expressed in a cell-autonomous fashion because wild type cells in proximity to Tp1 cells can be induced to form mutant structures. What is unclear is the distance over which this induction operates. The fact that Tp1 cells in the epidermis are capable of recruiting $Tp1^+$ cells in the sub-epidermis, and that Tp1 cells in one half of a spathe can recruit $Tp1^+$ cells to form the other half demonstrates that this effect extends to at least the boundaries of an organ. The 2 cases involving larger sectors of o5-1241

tissue suggest that Tp1 can operate over even greater distances, but we have not observed enough of these sectors to be confident about this conclusion.

Scott Poethig

Dosage analysis of Tunicate

The Tunicate mutation causes glumes in the ear and tassel to become abnormally large. Mangelsdorf and Galinat (PNAS 51:147-150) demonstrated that this mutation has 2 components, both of which have a weak Tu phenotype, and that these components can recombine to reconstitute a mutation having the severe phenotype of the original locus. This observation raises the possiblity that Tu is a duplication, and that its phenotype is a result of the overproduction of the product encoded by this locus. To test this hypothesis, Tu c2/+ c2 plants were crossed by TB-4L, and plants of the genotypes Tu/+/+, Tu/-, were identified on the basis of the expression of c2 in the endosperm. Seeds having colorless endosperms were assumed to have hyperploid embryos, those with pale purple endosperms were assumed to have diploid embryos, and those with dark purple endosperms were assumed to have hypoploid embryos. The hypoploid nature of the latter class of seeds was confirmed by the fact that they produced small, weak plants.

All 3 classes of plants had a Tu phenotype, although hypoploids were more severely affected than either diploid or hyperploid plants. The fact that Tu is expressed in hyperploids (Tu/+/+) indicates that this mutation reflects a gain-of-function rather than a loss-of-function, because a loss-of-function would have been compensated by the 2 wild type alleles in these plants. If this gain-offunction involved the overproduction of a wild type product, as would be expected of a duplication, hypoploid plants (Tu/-) should have a less severe Tu phenotype than their diploid or hyperploid siblings. This was not the case. The fact that wild type alleles reduce the expression of Tu(relative to the hypoploid condition) suggests that Tu may encode a product that antagonizes normal gene activity, but other alternatives cannot be excluded.

Scott Poethig

Corngrass: home again

Corngrass was originally mapped to the short arm of chromosome 3 by W. Galinat. Several years ago I obtained a stock of Cg which I subsequently used to try to locate the position of this mutation more precisely. These mapping studies demonstrated that the "Cg" mutation in this stock was unlinked to genes on 3S (MNL 58:170), creating some doubt about the actual location of Cg. I have since discovered that the mutation in this stock is tightly linked to Tp1 on chromosome 7, and that the stock was originally derived from an outcross of Cg to Tp1; it seems likely, therefore, that the mutation I had been working with is Tp1 rather than Cg. This conclusion is supported by the observation that the Cg mutation in the Coop's stock is linked to h on 3S (32% recombination, n = 136). A detailed linkage analysis is currently in progress.

A second dominant Corngrass-like mutation, which was discovered by J. Beckett, also maps to 3S. This mutation has a much less severe phenotype than Cg, and often displays poor penetrance. Although its most common effect is to increase the number of tillers, in some backgrounds it also causes an increase in node number, and the production of leaves in the tassel and ear. A detailed linkage analysis of this mutation is also in progress.

Scott Poethig

RALEIGH, NORTH CAROLINA Institute for the Study of Plants, Food and Man

Color in corn: natural factors

There may be ancient foundations for the multifaceted color systems that are so prominent in maize. All four teosinte species have white endosperm, no aleurone color and tan pericarp. If there were an ancestral, non-teosintoid wild maize which, after domestication, introgressed with one or more teosinte species (MNL 53:53-54), it could have had many contrasting alleles that controlled color in the endosperm, aleurone and the pericarp-cob systems. Yet other alleles could have been produced by the mutagenic action of transposable elements mobilized by the introgression.

Why might a wild maize have had an array of alleles distinct from those in the teosintes? Perhaps color was important in its reproduction, as an attractant to seedeating birds! The husks might have been light red, membranous and loose, surrounding small red cobs holding kernels with yellow endosperm. The cob's glumes might have been especially red and partly visible between the loose kernels. Perhaps there was a slightly reddish or purplish tint in the pericarp and/or aleurone. Red and yellow are a common combination that attracts birds to flowers and fruits, but I can think of no other grass in which color acts as such an attractant.

What seem to be the oldest archaeological cobs, those from the Tehuacán area of Mexico, have very narrow rachillas (stems subtending kernels), and their lower glumes are very thin, short and reflexed away from the kernel (MNL 59:43). It would have been easy for birds to detach kernels, eating many, scattering some. But why would maize need to attract birds when presently they come in flocks to fields of much less colored maize? Perhaps small plants of ancestral wild corn were scattered along disturbed river banks and gravel bars, and attraction was needed to assure distribution of seed before the plants fell over with the ear still holding its load of 40-70 kernels. Birds would have helped to spread seed and to thin the potential stand in the following generation. After domestication Mexican farmers would have selected uncolored maize with tight husks to reduce bird damage.

This is theorizing with little evidence and much supposition, but it would be interesting to see if a maize combining these colors were to attract many more birds (grackles?) than would a white-kernelled, white-cobbed form. Preferably this would be tested in Mexico.

Robert McK. Bird

RALEIGH, NORTH CAROLINA Institute for the Study of Plants, Food and Man North Carolina State University

The sweet butterscotch smell of Zea

We report that some progeny of crosses between Zea luxurians (Z.1.) and Z. diploperennis (Z.d.) smell like butterscotch. One of us (RMB) first noticed the odor on two F1 plants about to flower in the winter greenhouse at

Columbia, MO—the tassels being the source. These plants were transplanted outdoors in the spring where they flowered again with the same odor.

The following winter both plants were shipped to Raleigh, NC. One survived and continues to grow—and to give the strong odor of butterscotch from its tassel at flowering time. This plant (Neuffer 38:704.2) is the product of the cross of Z.l. (Neuffer 36:797-1, accession 759: derivative of USDA seed of *Z. luxurians* PI306615 collected near El Progresso, Jutiapa, Guatemala) by pollen parent Z.d. (Beckett 7931-1: Guzman 777 [original discovery], ex H. H. Iltis, ex Missouri Botanical Garden, collected at La Ventana, Jalisco, Mexico).

The second of us (SAM) determined by olfactoral examination through several flowerings that a butterscotch odor also exuded from the plant Hybrid #6 of the parentage Z.d. (Modena Mo81043/*100-1 : Guzman 1120, ex H. H. Iltis, collected east of Las Joyas, Jalisco, Mexico) by Z.l. (Modena G-36*6 : Iltis G-36, ex H. H. Iltis, collected west of Agua Blanca, Jutiapa, Guatemala). Like the above plant, the tassel odor was strong during flowering. The odor was stronger on the female spikes, leaf blades and especially the leaf sheaths. The plants (clones) were often damp at night or the early morning hours and the perfume was transferred to the hand with a touch. The essence is volatile. The odor was present for several weeks during the fall and the spring flowerings, but not between flowerings nor during the summer.

Several hybrid plants do not have this perfume at all. These are: Hybrid #3 of parentage Z.l. (Modena G-42*2 : Iltis G-42, ex H. H. Iltis, collected north of Ipala, Chiquimula, Guatemala) by Z.d. (Modena Mo81043/*100-3 : Guzman 1120); Hybrid #5 of parentage Z.l. (Modena G-36*3 : Iltis G-36) by Z.d. (Modena Mo81043/*100-3 : Guzman 1120); Hybrid #8 of parentage Z.d. (Modena Mo81043B : Guzman 1120) by Z.l. (Modena G-5*2 : Iltis G-5, ex H. H. Iltis, collected north of El Progresso, Jutiapa, Guatemala); Hybrid #9 of parentage Z.d. (Modena Mo81043A : Guzman 1120) by Z.l. (Modena G-5*1 : Iltis G-5). Neither of us has observed the odor on Z.l. plants, and the clones of the Z.d. parents do not have this odor.

We speculate that the butterscotch odor arises because of a secondary metabolite synthesized in hybrid plants. There may be several steps in the chemical synthesis of this metabolite, but the pathway suffers a synthetic or regulatory genetic block in each species—but at a different point. There may also be variation for several block points since only some combinations of Z.1. and Z.d. complete synthesis of the metabolite.

Robert McK. Bird and Stephen A. Modena

RALEIGH, NORTH CAROLINA North Carolina State University and USDA-ARS

Acp4 is the most distal marker on chromosome 1L

Table 1 shows data from 200 testcross progeny segregating for two morphological and two isozyme markers on chromosome 1L. We conclude that Acp4 is clearly distal to bm2, thus becoming the most distal marker mapped on 1L. Previous data on recombination between *Dia2* and Acp4 (J.F. Wendel et al., MNL 60:109-110) also suggest

Table 1. Testcross data.

Cross: gs, Phil-4, bm2, Acp4-2 x gs, Phil-4, bm2, Acp4-2

Phil-5.	*	Acol-5

				SCO region	•		DCO regions	•
		Parental Types		2	3	1,2	1,3	2,3
n -	200	65 59	11 14	5 13	12 17	;	0 1	1
	TOTALS	124	25	18	29	2	3	3
Recom	bination \$ (SE)		14.0 (2.5)	10.5 (2.2)	15.5 (2.6)			

*Regions 1, 2, and 3 correspond to the segments gs;Phil, Phil,bm2, and bm2.Acp4 respectively. No triple crossovers were observed.

that Dia2 may be distal to bm2.

Estimated map distances:

P.H. Sisco, J.F. Wendel and C.W. Stuber

The Sod genes of maize

The four SOD isozymes of maize are coded by the four nonallelic nuclear genes: Sod1, Sod2, Sod3, and Sod4 (Baum and Scandalios, J. Hered. 73:95-100, 1982). The cytosolic isozymes, SOD-2 and SOD-4, and the chloroplast isozyme, SOD-1, are copper and zinc-containing homodimeric enzymes. The mitochondrial isozyme, SOD-3, is a manganese-containing homotetrameric enzyme (Baum and Scandalios, Arch. Biochem. Biophys. 206:249-264, 1981, Baum and Scandalios, Plant Physiol. 73:31-35, 1983).

To investigate these genes we have constructed a cDNA library from W64A scutellar mRNA. The cDNA library was screened with synthetic oligonucleotide probes complementary to the mRNA coding for the N-terminal of SOD-1, SOD-2, SOD-3 and SOD-4 proteins. Positive clones from this work have been characterized by restriction endonuclease analysis, partial DNA sequence analysis, Sod2 has been completely sequenced (Cannon, White and Scandalios, PNAS in press), and hybrid select translation. Results indicate that Sod2 and Sod4 are similar in sequence, especially within the coding region. Most differences in DNA sequence between Sod2 and Sod4 occur in the third base of the codon and result in conservative amino acid replacement. The 5' and 3' noncoding regions of Sod2 and Sod4 cDNAs contain noticeable regions of similarity with shifts and minor changes of the DNA sequence. These results suggest that both Sod2 and Sod4 originated from a single progenitor Sod gene.

The mitochondrial associated SOD-3 (Mn) of maize has been restriction mapped and partially sequenced. The restriction profile is different from the SOD-2 and SOD-4 cDNAs. Preliminary DNA sequence results for the 5' end indicate that the protein contains a highly charged signal peptide of at least 25 amino acids.

Sod1 positive clones have been isolated and are in the preliminary stages of characterization. Additional collaborative work with Dr. T. Helentjaris, NPI, has shown the genomic location of the Sod2 and Sod4 genes to be on the short arm of chromosome 1 and the long arm of chromosome 7 respectively.

Ronald E. Cannon and John G. Scandalios

ST. PAUL, MINNESOTA University of Minnesota

A search for cytoplasmic restoration of genetic male sterility among regenerated plants and their progeny

The T cytoplasm undergoes changes during in vitro culture that result in a shift from male sterility to male fertility. The male fertile phenotype exhibits cytoplasmic inheritance and seems to be closely associated with an alteration in the mitochondrial genome (B. G. Gengenbach et al., Theor. Appl. Genet. 59:161-167, 1981). The reversion to male fertility represents a case of cytoplasmic restoration of male sterility because the revertant, male fertile plants should be Rf1 Rf1 rf2 rf2. This suggested to us that tissue culture may be a method of inducing cytoplasmic variants in the normal (N) cytoplasm that restore fertility in plants homozygous for one of the nuclear, recessive male sterile genes. If obtained, such variants would be useful in hybrid seed production by facilitating production of all-male sterile progeny containing normal cytoplasm.

Organogenic callus cultures were initiated from immature embryos heterozygous or homozygous for a known male sterile gene (Table 1). From 3 to 20 months after

Table 1. Summary of cultures and regenerated plants containing male-sterile genes.

B 3	Culture	No.	No. regenerated
genotype	age	cultures	plants
+/ms1	3-4	2	2
+/ma5	3-4	5	9
+/m37	3-4	2	2
+/m37	8-9	2	23
ms7/ms7	8-9	1	17
	12	1	14
	20	1	64
+/ma8	3-4	5	5
C	8-9	3	15
ma8/ma8	3-4	2	3
	8-9	3	49
	12	2	33
	20	12	102
+/ma9	3-4	3	4
TT MED J	8-9	2	16
+/ms10	3_4	4	4
	8-9	2	10
+/mg12	3_0	3	3
me2/ms12	8_9	3	44
HOLT NOTE	12	1	10
	20	1	12
. /	8.0		10
+/@313	0-9	3	10

culture initiation, plants were regenerated and grown to maturity in the glasshouse or field. Male fertile, regenerated plants were self-pollinated. Progeny of these plants were grown in the field and scored for male fertility.

Eleven tissue cultures were established representing 8 male sterile genes. Three cultures were apparently homozygous for the male sterile gene and only produced completely male sterile plants (348). Eight cultures were heterozygous for a male sterile gene and produced male fertile plants (111). Approximately 15% of these plants had high levels of aborted pollen (50-75%), indicating the presence of a chromosomal aberration presumably induced by the tissue culture process. Progeny of most male fertile regenerated plants segregated as expected (3 fertile:1 male sterile). Progeny of two regenerated plants had an excess of male sterile segregants and actually fit a 9:7 (fertile:sterile) ratio. Progeny of one regenerated plant did not segregate for male sterility. These plants were selfpollinated and male sterile segregants were observed in the subsequent generation. Overall, 459 regenerated plants were evaluated for cases of cytoplasmic restoration of male sterility in the normal cytoplasm. No cases of restoration were detected among these plants.

Michael Lee* and R. L. Phillips

*Dept. of Agronomy, Iowa State University

Sodium azide as a tissue culture mutagen

Sodium azide is a potent seed mutagen (A. Kleinhofs et al., Mutation Research 55:165, 1978) that has been shown to be mutagenic in maize (R.W. Briggs, personal communication; K.A. Hibberd and C.E. Green, MNL 52:73, 1978). Azide has potential in tissue culture mutagenesis for inducing biochemical mutants because it is a point mutagen and is not known to be highly mutagenic in mammals. Azide mutagenicity in friable, embryogenic (type II) cultures was evaluated using selection for lysine plus threonine resistance described by Hibberd and Green (PNAS 79:559, 1982) as a model selectable marker. Two friable, embryogenic callus lines, designated B and S, were initiated from advanced generations of A188 \times B73 crosses. Callus was incubated in citrate buffered azide solution, pH 4.45, for 1 h on a gyratory shaker. After washing, 0.5 g fr. wt. of callus was plated on a 7 cm Whatman #1 filter paper overlying non-selective medium. After 3 d recovery, the filter paper with cells was transferred to selective medium containing 3 mM lysine and threonine (LT). After 10 wk culture on LT medium, surviving colonies were scored as resistant variants (Tables 1 and 2). The LD50 azide for B and S callus lines was 1.1 and 2.5 mM, respectively. Even after adjusting the number of variants selected for azide toxicity, the recovery of LT resistant variants decreased with increasing azide. This may be because the plating procedure preferentially identified pre-existing, spontaneous variants which existed as relatively large cell aggregates at the time of plating. Any

Table 1. Effect of sodium azide treatment of B genotype friable, embryogenic maize callus on the numbers of selected LT resistant variants.

Azide	Variants	a	Predicted b	Adjusted
Treatment	Selected		11 d Growth	Variants/Plate
-mM-			-%control-	
0.0	31		101.8%	1.2
0.2	12		90.2%	0.51
1.0	4		55.7%	0.28
2.0	Ø		30.5%	Ø
4.0	Ø		Ø.6% C	Ø

a. Totals from two experiments of 6 and 20 plates taken after 10 wk on selective medium.

b. Predicted values from regression of dry wt

growth vs. azide concentration.

c. Observed value, not predicted value.

Table 2. Effect of sodium azide treatment of S genotype, friable, embryogenic callus on the numbers of LT resistant variants selected.

Azide	Variants	a Predicted b	Adjusted
Treatment	Selected	11 d Growth	Variants/Plate
-mM-		-% control-	
0.0	68	100.0%	3.2
0.2	17	95.8%	1.1
1.0	27	76.4%	1.8
1.5	8	66.3%	0.6

a. Taken after 10 wk on selective medium from 21, 16, 20 and 20 plates for 0, 0.2, 1.0, and 1.5 mM azide treatments, respectively.
b. Predicted values from regression of dry wt

growth vs. azide concentration.

growen vs. azide concentrati

azide-induced mutants, existing as 1-8 cell colonies when selection was applied, may not have been selected due to decreased selection efficiency of the small cell colonies. The decrease in selected variants may have reflected the toxic effects of azide reducing the pre-existing population of LT resistant variants in our cultures and reducing the viable cell plating density. We are conducting further experiments to evaluate this explanation.

A more likely hypothesis is that azide was not highly mutagenic in the maize tissue cultures. Azide is known to be metabolically activated in barley embryos into the presumptive mutagenic metabolite, o-azidoalanine. To determine if maize callus synthesized the azide mutagenic metabolite, extracts of azide treated callus were compared with embryo extracts from azide treated B73 imes A188 kernels for mutagenic metabolite synthesis using the Ames Mutagenicity Test. Free azide is volatilized in this assay so only levels of mutagenic metabolite were determined. Kernels were pre-soaked 8.5 h and then treated with 1 mM azide. Embryos were dissected and extracted for mutagenic metabolite. A 1 mM azide kernel treatment induced light green, albino, brown-spotted or yellow-gold stripes in 56% of the plants arising from the treated kernels indicating that somatic mutations were induced by azide treatment of embryo tissues. Callus was treated with 1 mM azide as before and sampled over time. Mutagenic metabolite levels 4 h after azide treatment were similar in callus and embryos (Table 3). Mutagenic metabolite levels declined in the callus to slightly above control levels of 20 h after treatment, which was before callus growth had resumed. Embryo metabolite levels remained high up to 40 h after azide treatment, by which time germination had resumed as indicated by the appearance

Table 3. Mutagenic metabolite in tissue extracts sampled at different times after sodium azide treatment detected by scoring reversion of his-Salmonella typhimurium strain TA1530. Data are averages of two plates for each of two treatment replications with the average spontaneous frequency of 44 revertants per plate subtracted. Extracts of untreated tissues induced 0 revertants above the spontaneous frequency for embryos and S callus.

		Но	urs Afte	r
	Azide	Azid	e Treatm	ent
Tissue	Treatment	4	20	40
	-mM-	-His+	reverta	nts-
Embryo	1.0	1480	1800	980
S Callus	1.0	1160	42	35

and elongation of the radicle. Friable, embryogenic maize callus appeared to possess an active detoxification pathway, which is hypothesized to degrade the azide mutagenic metabolite before respiratory-arrested cells resumed growth and were mutagenized. The lack of evidence for azide mutagenesis at the Ltr loci in callus and the potent mutagenicity in kernels correlates with the decrease of mutagenic metabolite in callus tissue and higher levels persisting in embryos of treated seed, suggesting that azide mutagenesis is tissue specific in maize.

Using the filter paper selection procedure, 180 LT variant callus lines have been selected. Plants have been regenerated from 20 of the most promising lines and each line will be genetically characterized to determine if the trait can be recovered in the progeny of regenerated plants. Since selections were carried out in two different callus lines, we can be confident that mutants selected will represent at least two different genetic events. Multiple selections within the same line may not represent different mutations. Thus, to maximize selection of different alleles and genes conferring LT resistance in the absence of a mutagenic treatment, we suggest selecting among different callus lines to insure isolation of different spontaneous mutations.

Stanton B. Dotson and David A. Somers

SALT LAKE CITY, UTAH NPI

A strategy for pinpointing and cloning major genes involved in quantitative traits

The application of gene transfer technology to plant breeding suggests opportunities for exciting improvements, but the approach in general is limited to the transfer of single genes with obvious phenotypes. Presently, one can consider improving a cultivar through the incorporation of herbicide resistance and possibly some disease resistance genes, but this technology does not address those traits of greatest concern to breeders such as yield, standability, maturity, i.e. any trait exhibiting quantitative expression and inheritance. This limitation stems principally from our lack of understanding as to exactly how single genes influence complex traits as well as to a lack of methods to identify and clone such genes.

D. Robertson previously suggested (MNL 58:10-11, 1984 and 59:8, 1985) that different alleles at a single locus could result in a broad range of phenotypes. In other words, the level of expression or type of gene product produced from an individual locus can determine whether the isolate is recognized as a simply inherited, extreme phenotype mutant or as a variant for a trait with multigenic expression and inheritance. Therefore the same gene with different mutations could be identified as a "qualitative" locus but in other cases as a "quantitative" locus. He then hypothesized that the cloning of QTLs (quantitative trait loci) could be facilitated by recognizing this relationship and targeting those loci with similar but more extreme phenotypes. For example, cloning a gene corresponding to an extreme dwarf or defective kernel phenotype would then permit the isolation of other alleles at the same locus from lines with more moderate and useful alterations in plant height or seed yield characteristics. A difficulty with this approach is that although it does allow one to clone a QTL for a trait of interest, it does not predict whether that gene contributes any measurable effect to the trait in the lines of interest, i.e., is it a major gene?

We have recently explored a new method for identifying major QTLs, as well as testing whether QTLs can be associated with loci corresponding to extreme phenotype mutants in maize. Such a methodology would then facilitate cloning major QTLs through conventional transposon tagging. RFLP analysis (Nienhuis et al., Crop Science, in press) can be used to pinpoint major QTLs when examining quantitative traits, much as isozyme analysis has been previously used. The advantage here is that with our current RFLP map of maize (greater than 250 marker loci located on all ten chromosomes), we can systematically analyze individuals from segregating populations for their expression of the trait of interest as well as check all

chromosomal segments for their genetic contribution to the trait. With these data, one can pinpoint major QTLs with respect to the locations of our RFLP marker loci.

In a preliminary experiment supportive both of Robertson's hypothesis and this strategy, we have examined several quantitative traits by both isozyme and RFLP analyses in collaboration with C. Stuber and M. Edwards at N.C. State. In an examination of a segregating F2 population derived from the cross $Tx303 \times Co159$, several major QTLs for plant height were identified. In the attached figure, we show the results with several markers on chromosome 9 and their genetic contribution to overall plant height (denoted in circles above the marker loci as the percent variance accounted for by them). The advantage of multiple markers is obvious here as one can scan up and down the chromosome to find the marker which accounts for the most variance for plant height and presumably is located closest to the actual QTL, in this case the isozyme, Acp1 and RFLP #222. We would therefore pinpoint this major QTL, which accounts for at least 27% of the variance in plant height, as being located near the centromere and of interest, also very close to the known GA dwarf locus, d3. If one could confirm that this proximity was not just coincidence, then this relationship could be exploited to clone the d3 allele through transposon tagging and subsequently obtain related alleles from other lines which might function as major genes for plant height in lines with less extreme variance. Interestingly, this type of analysis allows one to deduce that the QTL for shortened plant height near d3 is recessive in gene action as also is d3.

This type of analysis can identify the genomic location of those genes accounting for the most variance for a particular trait, which we feel are most likely to be "rate-limiting" at least in the particular lines examined. Consequently changes in gene expression at that locus are most likely to result in changes in the overall phenotype and we believe these genes would therefore be the best candidate genes to clone, alter, and transfer to effect plant improvement. Hence one might be able to significantly affect quantitative traits through the introduction of single genes. An attractive precedent here is the result of Palmiter et al. (Science 222:809-814, 1983), who were able to obtain a much greater than naturally observed variation in body size, an obvious quantitative trait, after introduction of a single altered growth hormone gene into mice.

We cannot overemphasize the importance of the conventional maize map with all of its mapped morphological markers in the successful application of this approach. As we improve the correlation of our RFLP linkage map with the conventional map, major QTLs can first be identified as tightly linked to RFLP markers and then subsequently to extreme mutant phenotype loci located on the conventional map. Obviously for the purposes of this approach, one should not discontinue efforts to map morphological markers and we should in the future stress the further correlation of the conventional and RFLP linkage maps.

Tim Helentjaris and Donna Shattuck-Eidens

RFLP mapping of cloned genes

Through the use of restriction fragment length polymorphisms (RFLPs), an extensive genetic linkage map of the maize genome has been constructed (Helentjaris et al., PNAS 83:6035, 1986). Our most current version of the map consists of approximately 300 loci detected through the use of RFLPs. This includes 21 clones of known identity, many of which were previously unmapped as to chromosomal location. The following is a list of these identified clones, their approximate chromosomal location, and the individuals who provided them.

Identity	Locus	Chromosome	Provider
Anthocyaninless	51-A1	3L	H. Saedler
Actin ^a	368-Act1	8 ^b	R. Meagher
Alcohol dehydrogenase-1	21-Adh1	1L	M. Freeling
Alcohol dehydrogenase-2	228-Adh2	4S	M. Sachs
Aleurain (barley)"	348-Alr1	2L	J. C. Rogers
	349-Alr2	7L	
Booster (presumptive)	248-B1	2S	V. Chandler
Bronze-1	8-bz1	9 S	D. Furtek
Endogenous Mu	347-EMu	2°	V. Chandler
Heat shock protein (70Kd)	119-Hsp1	8L	D. Ho
NADP malic enzyme ^a	231-Me1	3S	P. Collins
Shareen, and share the second	330-Me2	6L ^b	
Pericarp color	370-P1	18	T. Peterson
Phosphoenol Pyruvate Carboxylase	332-Pep	9L	B. Taylor
Phytochrome (barley) ^a	251-Phy1	1L	P. Quail
	369-Phy2	5S	1994 (* 1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
Pyruvate, Pi dikinase ^a	229-Pdk1	6L	P. Collins
	230-Pdk2	8°	
Ribulose Bisphosphate	227-Ssu1	4L	B. Taylor
Carboxylase (small subunit) ^a	331-Ssu2	2^{c}	Later of the second second
Shrunken	15-sh1	9 S	B. Burr
Sucrose synthase-2	121-Css1	9L	L.C. Hannah
Superoxide dismutase-2	419-Sod2	7L	R. Cannon
Superoxide dismutase-4	412-Sod4	18	R. Cannon
Triosephosphate isomerase ^a	345-Tpi4	38	M. Marchionni
	346-Tpi5	5S ^b	
	344-Tpi3	8S	
Waxy	16-wx1	9 S	N. Fedoroff

"e" = Indicates duplicated loci; that is, individual clones detect more than one fragment, which have been mapped to different locations

"b" = Locus has been assigned to chromosome, however, linkage data not available

"c" = Located near centromere

Once an RFLP linkage database has been established, identifying the genomic location of previously unmapped sequences can be accomplished quickly and easily. The use of unmapped as well as conventionally mapped sequences of known identity is of great utility in developing an RFLP linkage map. They establish a correlation of RFLP linkage groups to the conventional maize map and in many cases, an orientation to the chromosomal arms. Anyone who is currently generating clones of known identity and would be interested in having their genomic location determined, please feel free to contact us^{*}.

Scott Wright, Tim Helentjaris* and Yasuhiro Kikuchi

SALT LAKE CITY, UTAH Howard Hughes Medical Institute CLEMSON, SOUTH CAROLINA Clemson University CANBERRA, AUSTRALIA CSIRO

Sequencing of mtDNA related to a recombination event involved with male fertility and/or toxin resistance in T cytoplasm

Restriction enzyme analysis of mitochondrial DNA (mtDNA) from normal (N), cytoplasmic male sterile (cms-T) and fertile revertants (regenerated from callus from immature embryos of cms-T) has identified a 6.6 Kb XhoI fragment that is unique to cms-T mitochondrial genome with only one exception (Brettell et al., Theor. Appl. Genet. 58:55, 1980; Gengenbach et al., Theor. Appl. Genet. 59:161, 1981; Umbeck and Gengenbach, Crop Sci. 23:584, 1983).

Comparative studies of the 6.6 Kb XhoI fragment from the cms-T mtDNA and the regions homologous to this fragment in the N genome and a fertile revertant, V3 (WF9T/W22 \times A188Nrf \times W22rf), provided us a clue to the molecular basis of male sterility and/or T-toxin sensitivity in T cytoplasm.

Southern analysis of cosmid clones containing the 6.6 Kb XhoI fragment from cms-T mtDNA and homologous regions from N and the fertile revertant V3 mtDNA show that a number of events are necessary to explain the formation of the 6.6 Kb XhoI fragment in cms-T and its subsequent loss in the fertile revertant. This includes the formation and the loss of a 4 Kb repeat and at least two independent recombinational events (Fauron et al., Curr. Genet., in press). The region of interest could be narrowed down to a 1.5 Kb AvaI fragment internal to the 6.6 Kb Aval fragment. The 1.5 Kb Aval fragment contains part of two reading frames, ORF13 and ORF25, identified by Dewey et al. (Cell 44:439, 1986). This 1.5 Kb AvaI fragment hybridizes to a 2.1 Kb Aval fragment in N and V3 (Abbott and Fauron, Curr. Genet. 10:777, 1986). Fine mapping of the 2.1 Kb AvaI fragments of N and V3 shows that the two are almost identical (Fauron et al., in press). The data suggest that the two parts of a DNA sequence in N, that have been split and dispersed in T mtDNA, are brought back together through a recombination event in the V3 mtDNA, the fertile revertant.

Sequence analysis of those two 2.1 Kb AvaI fragments and the cms-T specific 1.5 Kb AvaI fragment has enabled us to localize the recombination site. The break point is

Figure 1. The nucleotide sequence of homologous regions of maize mtDNA from N, cms-T, and a fertile revertant, V3, showing the point of sequence divergence between T and N and V3. The underlined sequence is unique to cms-T. The "boxed" sequence represents the difference between N and V3.

located 6 bp past the ORF13 stop codon (Figure 1). Upstream from this point, the T sequence represents the 3' end of the ORF13 unique to cms-T. It is interesting to see that the recombinational mechanism that gave rise to the 2.1 Kb AvaI fragment in V3 has reconstructed an exact N-like sequence at the break point. Between the break point and the beginning of ORF25, the region seems very unstable as seen by the many changes between the 3 genomes.

Another fertile plant, V32, regenerated from a different embryo [WF9T/W22 \times A188Nrf \times A188Nrf], was sensitive to T toxin and produced four seeds [A,B,C,D] of which A gave a partly sterile and toxin sensitive plant and D a fertile toxin resistant plant. Interestingly V32A, V32B mtDNA contains the 1.5 Kb AvaI fragment while the V32C, V32D mtDNA contains the 2.1 Kb AvaI fragment.

C. Fauron, J. Qin, A. Abbott and R. Brettell

SLATER, IOWA Garst Seed Company COLUMBIA, MISSOURI University of Missouri and USDA-ARS

Delayed pollen development in maize \times *Tripsacum* hybrids

Eight maize lines and hybrids were used as female and crossed by tetraploid *Tripsacum dactyloides* L. "Huey". From these crosses, five maize stocks [Strawberry Pop, Ladyfinger Pop, 311255, Aho (Alexander High Oil), and Mo20W/Aho] showed good seed set (over 50 viable kernels per ear). The other three stocks, Tom Thumb, Mo20W and a synthetic tetraploid, showed normal early kernel development but gave nonviable, collapsed mature kernels. Viable kernels from the above crosses were germinated, root tips were fixed for chromosome counting, and seedlings were transplanted into 10 inch pots. Fresh young and mature anthers from these plants were examined by the acetocarmine-haematoxylin staining technique. The results are summarized as follows:

- 1. Exposed mature anthers failed to dehisce; no pollen shedding was observed.
- 2. Microspores from single, fresh young and mature anthers showed clear size variation.
- 3. In most cases, microspores from single mature anthers were aborted or degenerated, as determined by their non-staining cell contents and transparent appearance.
- 4. Development after meiosis was delayed and developmental differences among the microspores were observed. These variations occurred at various developmental stages during pollen development.
- 5. After meiosis, the genomes of maize and *Tripsacum* may not fuse together to form a single nucleus. Microspores that carry one large and one small nucleus are frequently seen. This phenomenon may represent a tendency of maize and *Tripsacum* chromosomes to fail to aggregate after division.
- 6. After meiosis, microspore development can be classified as (a) uninucleate, (b) first mitotic stage, (c) binucleate, (d) second mitotic stage, (e) trinucleate, or (f) mature pollen. From one young anther, the following counts were obtained:

1000 aborted or degenerated

11 tiny aborted or degenerated

- 40 uninucleate (a)
- 7 binucleate (c)

In addition to aborted or degenerated spores, the following counts were obtained from a mature anther:

- 62 uninucleate (a)
- 26 first prophase (b)
- 14 first metaphase (b)
- 16 first anaphase (b)
- 5 first telophase (b)
- 5 binucleate (c)

No microspores reached the second mitotic stage in either anther. Therefore, no mature pollen is present when the anthers are mature.

- 7. Microspore degeneration and delayed microspore development cause complete male sterility in maize \times *Tripsacum* hybrids.
- No clear starch accumulation was observed in the microspores, but many oil-like droplets of various sizes accumulated in the cytoplasm.

Degeneration and delayed development of the microspores can be attributed in part to unequal distribution of genetic material after meiosis. The hybrids carry 46 chromosomes (10 from maize and 36 from Tripsacum), which represent one complete set of maize chromosomes and two complete sets of Tripsacum chromosomes. Although they carry two different sets of metabolic assembly lines, F1 plants can survive and grow even though these assembly lines may be working independently. During meiosis, the maize chromosomes are divided randomly between two daughter cells (or lost). The frequency at which a single cell receives a complete set of maize chromosomes should be $(\frac{1}{2})^{10} = \frac{1}{1024}$ (or about 0.1%). However, all the cells will receive one complete set of Tripsacum chromosomes. Therefore, all the meiotic products should function properly. In our experience, no single microspore reaches maturity, which may imply that unequal distribution of maize genetic material may cause high interference with normal metabolic processes during microspore development.

A significant goal in the study of pollen development is finding genes that control microspore degeneration (West and Albertsen, MNL 59:87) or cause delay in development. Such results can help us understand the genetic control of male sterility.

Ming-Tang Chang and J.B. Beckett

Genetic effects of hypoploidy on kernel weight, plant height and leaf width

Maize hypoploids are derived from non-disjunction of the B-A chromosome from a B-A translocation stock. In a genetic sense, a hypoploid has part of one chromosome arm missing, and is hemizygous for that particular arm segment. Preliminary study showed that a B-A translocation per se will not have any significant effect on kernel weight, plant height, and leaf size. This result suggests that the B chromosome and the break point of the translocation will not have a critical deleterious effect on proper genetic function of the genome. But in hypoploids, when one chromosome arm is missing, different chromosome arms show different effects on kernel weight, plant height, and leaf size. Our studies show that the degree of effects is not highly correlated with the length of chromosome arm fragment, but is highly dependent on the missing arm. In other words, certain chromosome arms are more critical than others for the expression of those quantitative traits. This implies a non-random distribution of genes that are important for the expression of a quantitative trait. It also implies clearly that genetic dosage effects can be immediately observed, if gene doses are altered.

Materials used for this study came from progenies in an ongoing project for converging TB's to inbred lines. TB-carrying pollen parents at the BC3 level with A619 were crossed onto genetic testers for identification of hypoploids. Samples of 100 kernels were weighed and the percent reduction for hypoploid versus sib endosperms was calculated. Hypoploid plants were identified in the field and plant height and leaf width were measured. The physical arm length missing (Table 1, A) was calculated from data on breakpoints (Kindiger et al., MNL 60:50) and arm lengths (Maize for Biological Research, p. 52).

Results showed that the hypoploids of TB-1Sb, TB-1La, TB-5Sc, TB-7Lb, TB-9Lc and TB-10L19 have substantial effects on kernel weight (Table 1, B). A 0.48 correlation coefficient between physical chromosome arm length and

Table 1. Genetic effect of hypoploidy on kernel weight, plant height, and leaf width. A, physical arm length that is missing; B, percent kernel weight reduction; C, percent plant height reduction; D, percent leaf width reduction. Physical arm length is calculated by arm length times percent of arm; for example, hypoploid $18b = 92.53 \times 0.95$ = 88.

* = Data not available.

91

kernel weight was obtained, which implies that kernel weight reduction was not directly proportional to physical arm loss. The plant height of hypoploids is consistently smaller than that of their normal sibs, but TB-1Sb, TB-1La and TB-9Lc have greater effects than others on plant height (Table 1, C) and on leaf width (Table 1, D).

Plant and leaf color of the hypoploids is also variable. Hypoploids for TB-7La and TB-8Lc are dark green, TB-7Sc and TB-9Lc are yellow green, and those for TB-1Sb, TB-3Sb, and TB-5La are pale green. The leaf size and leaf shape of the hypoploids are modified also. TB-1Sb, TB-5Sc, TB-5La, and TB-6Lc have long, narrow leaves, TB-1La has short, narrow leaves, TB-4Sa and TB-8Lc have short, broad leaves, TB-3La and TB-7La have short, erect leaves.

Based on these preliminary results, it is evident that certain chromosome arms show a positive correlation of their genetic effects on kernel weight, kernel size, leaf width, and plant height. The long and short arms of chromosome one are very critical for normal kernel, normal leaf, and normal plant development. Since these preliminary results were based on F1 materials from crosses on different testers, the background and environment may have great effect on the phenotypic expressions. Also, the materials that were screened came only from one inbred line, and the hypoploid phenotypes cannot be used for a generalized description. In any event these results show that certain important quantitative traits are influenced by dosage of certain chromosome arm regions, and these regions are important for crop characters and their improvement.

Ming-Tang Chang, E.H. Coe and J.B. Beckett

SRINAGAR, KASHMIR, INDIA Regional Research Laboratory, C.S.I.R.

Metroglyph analysis of morphological variation in maize grown in Kashmir

The present investigation attempts to classify 15 local maize varieties (Table 1) into morphologically distinct complexes. The results of the metroglyph analysis are presented in Figure 1 while class intervals and index values for 12 characters appear in Table 2.

The varieties could be separated into 3 distinct complexes (Fig. 1). Complex I is comprised of 2 varieties (Table 1) having orange flint grains. One of the varieties (Tchi II) possessed one short ray while Voz. IA was without any ray.

Table 1. Source and grain type of various local maize collections.

Var	lety	Source	Grain type
1.	Tchi II	Shopian	Flint orange
2.	Voz.IA	Pahalgam (Ganeshbal)	Flint orange
3.	Tchi I	Pahalgam	Flint white
4.	Tchi VI	Baramulla	Flint yellowish white
5.	Badh IIA	Shopian (Out-skirts)	Flint orange
6.	Badh IIB	Shopian (Out-skirts)	Flint white
7.	Badh IV	Pulwama	Flint orange
8.	Voz.IB	Pahalgam (Lidroo)	Flint orange
9,	Niv IVA	Pulwama (Out-skirts)	Flint orange
10.	Mish IIO	Shopian (Out-skirts)	Dent white
11.	Fero VB	Tangmarg (Fernzpur)	Dent white
12.	Tchi III	Mahind	Flint grange
13.	Badh V	Tanomarg	Dent white
14,	Niv VA	Tangmarg (Outskirts)	Flint orange
15.	Kani IVB	Pulwama	Flint white

Table 2. Class intervals and index values for 12 characters of maize in Kashmir province.

C	Characters 1. Number of leaves/plant 2. Plant height (cm) 3. Leaf-index (cm) ^p	Index Values									
Ĩ		1		2			3				
1.	Number of leaves/plant	11.8	0	11.8 -	13.5	ò	13.5	6			
2.	Plant height (cm)	150.0	0	150.1 -	169.9	d	170.0	d,			
3.	Leaf-index (cm/	40,0	0	40.1 -	60.0	σ	60.1	O			
4.	Number of tassel branches/plants	16.0	0	16.0 -	22.0	α	22.1	م			
5.	Sheeling Sage	65.0	0	65.1 -	73.0	Q	73.1	Q			
6.	Ear height (cm)	60.0	0	60,1 -	80.0	Q	80.1	Ø			
7.	Ear length (cm) Ear diameter (cm)	12.0 3.0		12.1 - 3.1 -	14.'0 3.7		14.1 3.7				
9.	Number of ears/plant	1.5	0	1.5 -	1,0	P	1.8	ρ			
10.	Grain moisture (%)	28.0	0	28.1 -	34.5	-0	34.5	-0			
11.	Days to 75% silking	81.0	0	81.0 -	87.0	Ø	87.1	P			
12.	Tassel length from flag-leaf(cm)	38.0	0	38.1 -	44.0	Ô	44.1	ð			

The main characteristics of this complex were minimum number of leaves and tassel branches per plant; low grain moisture, tassel length from flag leaf, plant height, leaf index, shelling percentage and ear height. These varieties also required less days to 75 percent silking and had medium number of ears per plant.

Complex II is comprised of 9 varieties out of which Mish IIC, Fero VB had dent grains and the other 7 had flint grains. The grain colour varied from white (55.5%), yellow white (11.2%) to orange (33.3%). The varieties of this complex possessed a minimum of 3 rays each and were characterized by having low plant height and a minimum number of leaves and ears per plant. The rest of these characters were classed as medium.

Complex III contained 4 varieties. Excepting Badh V all had flint grains which were either white or orange in colour (50% each). Each variety was represented by a minimum of 9 rays. Except for higher percentage of grain moisture at harvest, varieties within this complex possessed medium characters.

Comparison of complexes revealed similar behaviour between Complexes II and III for leaf-index, number of tassel branches per plant, shelling percentage, tassel length from flag leaf and number of ears per plant whereas Complexes I and II and Complexes I and III were similar for number of ears per plant. Complex II emerged as an intermediate complex between Complexes I and III. Collections in Complex I had flint grains whereas both flint and dent grain types appeared in Complexes II and III.

The varieties that do not have flowering time overlapping with others are bound to retain their identity as no gene exchange will take place from one population to another. In the present study Tchi II is a pertinent example to quote. This variety was distinctly more early maturing than the rest of the Tchi varieties in the first place and secondly than all other varieties included in the present study (excepting Voz. IA). This variety is represented on the glyph only by 1 ray while all other Tchi varieties have more than 2 rays. Variety Voz. IA was without a ray (Complex I) thereby showing that this variety is closer to Tchi III. Incidentally the latest maturing variety was also from the Tchi group, i.e., Tchi III (Complex III), which was later flowering than 10 of the 15 varieties. The next early flowering variety was Badh IIA (Complex II), which was significantly earlier than 11 of the 15 varieties. Tchi III and Badh IIA (latest and next early) did not show a consistent significant difference either from their own groups or the rest of the varieties in all the characters (excepting number of leaves per plant). It may be due to the fact that some gene exchange did take place through some late flowering plants of early flowering populations and early flowering plants of flowering populations. Also, early maturity varieties (Tchi II and Voz. IA) have minimum ear length (9.1 cm) and ear diameter (2.7 cm) and required less days to silk, while the late maturing varieties (Tchi III, Badh V, Badh IV, Badh VA and Kani IVB) had maximum ear length (16.2 cm), ear diameter (4.0 cm) and required more days to silk.

Early maturing hybrids are generally adapted to semiarid agriculture. From the present study this picture emerged from the maturity of Tchi II and Badh IIA. It is worth mentioning here that maize in Kashmir is generally a rain fed crop, more particularly in areas like Pahalgam, Shopian and Tangmarg. Both of the above mentioned varieties that were early maturing were from one such area, i.e., Shopian. The latest maturity variety, i.e., Tchi III from Mahind, was observed at the time of collection to be growing totally under irrigated conditions.

P.N. Jotshi, B.K. Bhat and M.K. Bhan

TAIAN, SHANDONG, CHINA University of Shandong HAMILTON, ONTARIO, CANADA McMaster University

MMS induced aneuploidy in corn roots

Kernels were imbibed in distilled water for 24 hr, then treated with 3×10^{-3} M methylmethanesulphonate (MMS) for 1, 2 or 4 hr separately. Anaphase bridges and/or fragments were found 48-96 hr from the end of treatment (Table 1) and even after 96 hr recovery from 4 hr treatment, 11.8% anaphase configurations were seen to be aberrant. These are chromatid changes, present in meristems many of whose cells have undergone 2-3 cycles since MMS treatment. Evidence that at least 2 cell cycles have occurred since treatment is this: i) metaphases/anaphases with non-congressed chromosomes were present 44 hr after treatment; ii) 24-72 hr later metaphases with 17-22 chromosomes, i.e. numerical aneuploids, were present (Table 2). The aneuploid cells had undergone a replication cycle and were dividing again. The presence of 2n + 1 and 2n-1 metaphases, in approximately equal numbers, conTable 1. Frequencies of metaphases and anaphases with bridges/fragments of non-congressed chromosomes 54 and 72 hr after treatment with 3×10^{-3} M MMS for 1, 2 or 4 hr. Data other than 54 and 72 hr after treatment are not included.

		metapha	se	ana	phase
hr	hr in	number	%with	number	%with
after	MMS	scored	non-congressed	scored	f gments/
MMS			Chromosomes		bridges
	n	148	11.5	100	6.0
54	-12	132	9.8	112	7.1
	4	128	14.8	98	9.2
	(1	168	7.7	125	5.6
72	-2	112	7.1	102	7.8
	4	124	12.9	116	16.4

Table 2. Numbers of an euploids at metaphases 96 hr after treatment with 3 \times 10⁻³ M MMS with an euploid complements. A total of 268 metaphases were scored.

Chromosome Number	22	21	20 + frag.	19	19 + frag.	18	17
No. of aneuploid at metaphases	3	13	1	15	1	3	3

firms that the cells with non-congressed chromosomes divide again, and accordingly they may be capable of initiating stable lineages of aneuploid cells. Many reports emphasize one particular advantage of chemical mutagens; i.e., they induce high frequencies of point mutations and low frequencies of chromosome aberrations. The opposite result occurs with ionizing radiations. The results from the present study show that chromatid aberrations and chromosome non-congression are frequent after MMS treatment. This response may be specific to root meristems and may involve a stage that is particularly sensitive to MMS; i.e., the formation of alkylated bases such as 0⁶-methylguanine in DNA of meristematic cells as they are proceeding from G1 into S of the first cell cycle in the root of germinating corn. Continued formation, over 2-3 cell cycles, of cells with aneuploid complements means that the root meristems are, at least for some days. complex chimeras. Some complements will lead to cell death or to failure to proliferate: this will result in diplontic selection and therefore to a reorganization of meristems. Cells capable of initiating lineages will be able to repopulate disrupted meristems and to produce new growth. The chromosome changes seen in meristems 2-3 cell cycles after treatment provide a basis for diplontic selection; for the establishment of a new meristem from, perhaps, a few initial cells.

Ji-Ping Zhao and Douglas Davidson

TIFTON, GEORGIA USDA-ARS-IBPMRL

Linkage between silk browning and cob color

Previous issues of MNL have reported an association between the browning of silks at the tips (5-10 minutes after they are cut) and red cob color (MNL 59:40) and P locus control of silk browning (MNL 60:55). The results of tests we have conducted suggest a very close linkage relationship between factors for cob color and silk browning (<2% crossovers). We crossed a red-cob silk browning line (T204) with a white-cob green-silked line (NC34) and observed segregation in the F2 and first backcrosses. The backcross to T204 was all red-cobbed with browning silks, but the F2 and backcross to NC34 segregated about 3:1 and 1:1, respectively, for both red cobs and silk browning. The white-cob silk browning, and red-cob green silk classifications represented about 1.7% of the progeny in each of the F2 and BC2. Each generation was represented by at least 350 plants when summed over two years and no classification within generations contained fewer than two individuals.

These data clearly suggest two separate, but closely linked, dominant factors in control of red cob color and silk browning.

N.W. Widstrom

TUCSON, ARIZONA University of Arizona

A new B-A translocation: TB-2Sa

A translocation between a B chromosome and the short arm of chromosome 2 bearing the *B-Peru* allele has been recovered and designated as TB-2Sa. When homozygous for an *r* socd-color allele the hyperploid progeny are easily identified by their deeply colored scutella and colorless aleurones. Because no *wt* seedlings were observed (0/29) among the hypoploid progeny of a cross of *gl2 wt*, *r-g* × hyperploid TB-2Sa *r-g*, the breakpoint of the translocation probably lies between the *B* and *wt* loci. This translocation should prove useful in some studies of the distal half of 2S because the only other B-2S translocation available to date is an unmarked compound translocation involving 3L.

Thirty-seven *B-Peru r-g* multi-B-chromosome plants, whose tassels were just beginning to emerge from the whorls, were treated with 500 to 594 r of gamma irradiation given at a rate of 0.95 to 1.13 r/sec. Irradiation was accomplished by hanging the potted plants upside-down next to a retractable in-air ⁶⁰Co source at the University of Missouri Research Reactor. Pollinations were made from the irradiated plants onto various *r-g* testers 5 to 10 days after irradiation. The plant that gave rise to TB-2Sa received 500 r at a rate of 0.95 r/sec and was used as a pollen source six days after irradiation.

Among the 53,770 treated F1 progeny 234 TB-2S candidates were selected on the basis of their colorless aleurones and colored scutella. The selected F1's were planted in flats and screened for germination (205 germinated) and viability. Of the 143 individuals transplanted into the field, 64 were tested by crossing onto a gl2 wt, r-g tester. Only eight of those tested segregated for more than one non-corresponding (colorless aleurone/colored scutellum) kernel each and are considered to be likely candidates for TB-2S lines marked with *B-Peru*.

Further testing has only been performed on one of the candidates, TB-2Sa, which gave 2 kernels with colored scutella out of 45 with colorless aleurones from the F1 \times tester cross. Both of these kernels were planted and crossed again onto gl2 wt, r-g. Only one of these crosses resulted in segregation of non-corresponding kernels. Out of the 304 kernels from that one cross (179 colorless and 125 colored aleurones) there were 37 hyperploid and 29 hypoploid (colored aleurone/colorless scutellum) kernels.

The 37 hyperploids are being reserved for stock increases and further mapping of the breakpoint. Sandbench testing of the 29 presumptive hypoploids resulted in 13 gl2 and no wt seedlings. Thirty of the colored/colored euploid kernels were scored in the sandbench and 5 were gl2 and none were wt. The presence of a few gl2 seedlings in the fully colored euploid class is thought to be due to crossing-over between *B*-*Peru* on the translocated chromosome and gl2 on the normal homolog. The distance between *B* and gl2 is 19 map units.

The initial idea for this experiment was provided by Dave Hoisington, the stocks were provided by Jack Beckett and Ed Coe, and the gamma-rays were provided by Vicki Spate and all of the other fine folks at MURR.

Craig Echt

Factors affecting expression of Les1 in leaves

Last year it was reported that light is a required factor for leaf lesion induction in *Les1/Les1* plants (C. Echt, MNL 60:49). Through a series of light and temperature shift experiments the time-course, and the physiologically separable stages, of light-induced necrosis of *Les1/Les1* leaf tissue now have been determined. The term 'light-induction' is defined as the process of exposing dark-adapted leaf tissue to light for a length of time sufficient to induce necrosis of that tissue in *Les1/Les1* plants.

The time course of light-induced necrosis proceeds as follows (at 25 C): the first 2 hours of exposure to light represent a lag phase during which time induction can be reversed by returning the leaf section to the dark; the time from 2 to 6 hours after exposure is when an increasing proportion of the cells become irreversibly set to die; necrosis occurs over a period of time from 8 to 20 hours after exposure. The observed family-to-family variability in the timing of the various stages is presumably due to segregation of unidentified loci that modify *Les1* expression.

The three stages of light-induced necrosis that have been determined so far are (1) development of lesionforming potential in the maturing leaf, (2) induction, and (3) necrosis. Each of these stages has a different light and temperature requirement. Lesion-forming potential is independent of light and temperature and appears to be determined solely by the age of the leaf. Induction generally requires light and has a temperature optimum of around 25 C. Temperatures between 30 C and 35 C during the induction period decrease the necrosis response by 90-95%. Necrosis is independent of light and is inhibited by temperatures over 30 C.

An "action spectrum" of light-induction was determined with the use of monochromatic light filters obtained from Carolina Biological Supply Co. White light is most efficient for induction. Induction did not occur with blue light (350-550 nm, peak at 450) and was reduced by about 90% with red light (550-750 nm, peak at 650). Far-red light (650-750 + nm, max. at >750 nm) does not inhibit the induction response elicited by white or red light. It thus appears that light induces lesion formation by a general stimulation of photosynthetic activity. The active photosynthetic product(s) must be translocatable, however, because lesions can form within sectors of white leaf tissue bordered by green tissue (Hoisington, MNL 60:57) and, on occasion, within dark-adapted leaf sections prior to exposure to light (C. Echt, MNL 60:49).

94

Several experiments suggest that translational and transcriptional events may be involved in lesion formation. It was found that cycloheximide (50-200 μ M) is effective at inhibiting light-induced necrosis when administered through cut leaf tips for 2 hours prior to, and during, a 7 hour light-induction period. Light-induced necrosis is also prevented when a 6 hour light exposure at 25 C is preceded by a 4 hour light exposure under heat shock conditions (42 C, 100% R.H.). In contrast, necrosis proceeds normally when a 6 hour exposure at 25 C is preceded by a 4 hour exposure at 25 C is preceded by a 4 hour exposure at 25 C is preceded by a 4 hour sposure at 25 C is preceded by a 4 hour exposure at 25 C is preceded by a 4 hour exposure at 25 C is preceded by a 4 hour exposure at 30 C.

These observations are consistent with the hypothesis that a translocatable photosynthetic metabolite is involved in the induction of the *Les1* phenotype and that the expression of *Les1* may require the activation of a specific gene or genes.

Craig Echt

Root lesions in Les1/Les1 seedlings

Production of localized tissue necrosis by the Les1 allele occurs not only in the leaves and leaf sheaths of Les1/Les1 plants but apparently also in the roots. Sibling comparisons were made between 27 Les1/Les1, 12 + /Les1and 38 + /+ 10- to 12-day-old seedlings from several different F2 families. Les1/Les1 seedlings exhibited small areas of tan discoloration and cellular collapse along the primary roots and in the central portions, or at the points of attachment, of some of the adventitious branch roots of the primary and lateral roots. The roots of all +/+ and most +/Les1 plants were unblemished.

The lesions on the primary roots were 2-5 mm long and about 1 mm wide. Lesions on the branch roots covered the circumference of the root and were 2-4 mm long. When lesions were present at the base of the branch roots they occasionally extended into a patch on the primary or lateral root.

The extent of lesion expression was variable. Some Les1/Les1 root systems had a decidedly brown appearance, while on others only a few lesions could be found. Whether this variation is genetic, physiological, or environmental is not known. Lesion expression on +/Les1 roots, when it was found, was always low. The severity of root-lesion expression did not appear to be correlated with the severity of leaf-lesion expression. This lack of correlation between expression in leaves and roots suggests that root lesions are not simply a physiological result of leaf-lesion formation. It also indicates that Les1 expression may be controlled by different environmental or physiological factors in different tissues.

The plants were grown in $8'' \times 1.5''$ (top dia.) conical plastic containers (Super-cell Cone-Tainers) filled with Pro-mix soil mixture. Following germination at 30 C, the seedlings were placed in growth chambers set for 14h 25 C days and 10h 20 C nights with an irradiance of 350 uE/m²/sec. Les1 genotypes were scored on the basis of wt1 expression (wt1 is a closely linked marker) or on the basis of relative severity of leaf-lesion expression. The roots were exposed intact by removing the soil plugs from the containers and separating the roots from the soil in a basin of water.

Craig Echt

Low frequency transmission of Les1 wt1 gametes

Lesion expression in Les1 homozygotes is earlier, more uniform, and more severe than in Les1 heterozygotes. Consequently, it is preferable to use homozygous material for biochemical and physiological investigations of Les1 expression. One can actually score Les1 homozygous seedlings before lesion expression is initiated with the aid of the closely linked recessive marker wt1 (white-tipped first and second leaves) (Hoisington, MNL 60:51). Such marked stocks are generated simply by selfing or intercrossing + +/Les1 wt1 lines. (Les1/Les1 plants die as seedlings in the field.) The expected ratio of 1 wt1:3 Wt1 seedlings was not found, however, in most of the stocks generated in this manner.

Table 1 lists the percentages of wt1 seedlings observed for several different types of $+ +/Les1 wt1 \times + +/Les1$ wt1 crosses. The $+/wt1 \times +/wt1$ crosses used as controls were made with segregating +/wt1 (non-Les1) siblings. The two F1 families used in these crosses had as their male parent the same + wt1/Les1 wt1 individual. In all crosses 25% of the progeny are expected to be wt1.

Table 1. Effect of Les1 on transmission of wt1.

CLOSS	# wt/# total	8 W.L	# ears tested
non-Lesl			
(Mo20W/wtl) (8)	54/225	23.9	5
(W23/ <u>wt1</u>) (8)	24/82	29.3	3
(Mo20W/wt1)			
X (W23/W1)	50/200	25.0	2
(W23/wt1) X			
(Mo20W/wtl)	44/215	20.5	7
Lesl			
(Mo20W/Les] wt]) (179/770	23.2	7
(W23/Lesl wtl) (8)	128/990	12.9*	5
(Mo20W/Lesl wtl)			
X (W23/Lesl wtl)	301/1893	15.9*	6
(W23/Les] wtl) X		575 5556	
(Mo20W/Lesl wtl)	96/751	12.8*	5

Values are significantly different from the expected 1:3 ratio (p > .10).

The data indicate that all crosses involving W23 and the Les1 wt1 chromosome have a striking reduction in the number of Les1 wt1 progeny. Germination frequencies for all families were between 97% and 99%. Semi-sterility was not evident on any of the ears from ++/Les1 wt1 plants. Pollen abortion in the ++/Les1 wt1 plants was not examined. Sufficient data on the reciprocal crosses between ++/Les1 wt1 and +/wt1 plants are not yet available.

Under-representation of Les1 wt1 seedlings cannot simply be due to poor expression of the wt1 trait for two reasons. First, very few of the non-wt seedlings gave lesion expression characteristic of Les1 homozygotes. This type of lesion expression would be expected among the Wt1/class if the Les1 wt1 chromosome was transmitted at a normal frequency but wt1 was poorly expressed. Second, outcrosses of the original recombinant + wt1/Les1 wt1 individual (recovered by D. Hoisington), and of the + +/Les1 wt1 F1 individuals, onto various inbred lines resulted in a lower than expected frequency of +/Les1 plants in the progeny. In these crosses Les1 gametes (microspores) were transmitted at a frequency of 31% (32/103) from the original + wt1/Les1 wt1 individual, 38% (29/77) from several Mo20W/Les1 wt1 F1 individuals and 18% (40/223) from several W23/Les1 wt1 F1 individuals. Similar crosses with +/Les1 plants give the expected transmission frequency of 50% for Les1 gametes (Neuffer & Calvert, J. Heredity 66:265).

Further tests are needed to explain why the lower transmission of *Les1* gametes that was observed following outcrossing of the Mo20W/*Les1* wt1 family was not observed following its selfing. If *Les1* is directly involved in the reduction of *Les1* wt1 gametes, however, then another interesting effect of the *Les1* mutation has come to light.

Craig Echt

URBANA, ILLINOIS University of Illinois

Glossy seedlings - update

Testing of the unknown glossies in the Coop collection is nearing completion. Tests are still incomplete on a half-dozen items but otherwise no new glossies have been found.

Two anomalies are still under investigation. The first involves gl1 and gl7. These are on chromosome 7 and 4 respectively yet they give glossy seedlings in F1. In all tests conducted thus far they behave as functional alleles. A somewhat similar case involves gl3 and gl15. In the routine tests for allelism, involving crosses of known heterozygotes, a few cases were found in which the unknown glossy indicated allelism with both gl3 and gl15. This behavior was confirmed using homozygous glossies as parents. Additional tests of such exceptional behavior are in progress.

The stock designated gl5 represents a duplicate gene situation, both recessive alleles being required for glossy expression. I have used the symbols gl5-1 and gl5-2. As this usage does not conform to accepted nomenclature, I have designated gl5-2 as gl20. gl5 is linked with su with 12% crossing over. gl20 remains unlinked.

gl14-wt linkage: Preliminary data indicated linkage of gl14 and wt. The backcross data available are as follows: Gl14 Wt 113 : Gl14 wt 18 : gl14 Wt 45 : gl14 wt 76, indicating approximately 25% crossing over.

G.F. Sprague

Dt6-Su-Gl3

Dt6 was derived from virus-exposed cultures. The pattern is more extreme than Dt1 in dosage response. In homozygous form the lower third to half of the kernel appears almost self-colored. In heterozygotes dotting is more frequent on the sides than crowns of the seeds. Dt4 in the Coop stocks is supposed to be on chromosome 4 but in repeated tests I have been unable to establish any linkage with *su*. On that basis I have assumed Dt6 to be new. Limited backcross data indicate the following linear order: Dt6 13 Su 41 Gl3.

G.F. Sprague

y11 and y12

Two new lemon yellow types have been identified. Allelism tests have been completed with y1, y3, y8, y9 and y10. Both give normal yellow:lemon segregations in F2 and the lemon-yellow seeds give rise to normal green seedlings and are fully viable.

G.F. Sprague

sh5

This trait was found in one of the virus-derivedmottled cultures. The crowns of the affected seeds rarely collapse. Most of the reduction affects the sides of the seeds. Classification is reasonably accurate. The gene is located on chromosome 5. The backcross data involving Prare as follows: Pr Sh 977, Pr sh 255, pr Sh 301, pr sh 1021. sh4 has been reported on chromosome 5 but tests for allelism were negative. The symbol sh5 is suggested.

G.F. Sprague

A new allele at the Y1 locus with pleiotropic effect

A pale golden plant type was observed unlike g1, g2 or g4, more closely resembling pg11, pg12. All tests for allelism were negative. This type was later shown to be either closely linked or allelic to y1. The endosperm color is a straw yellow rather than white. In the F2 populations available all Y seeds gave normal green plants and all straw or lemon colored seeds gave yellow green or golden plants with moderate to severe blotching of the leaves. Leaf tissue in these affected areas eventually dies. In the plants that survive, the blotching becomes less extreme as the plant develops. This should be a useful trait as individuals may be classified in the seed, seedling or mature plant stage. Dr. Robertson informs me this may be similar to a type called pastel described by Anderson many years ago.

Miniature germ - mg

G.F. Sprague

Miniature germ was reported by J. B. Wentz (J. Hered. 15:269-272). This stock was never included in the Coop. A similar phenotype was found as a mutant in one of the breeding cultures and segregation indicated a single factor. Seed size is essentially normal but germ size is reduced to one-fourth or one-third of normal. In the sand bench mg seedlings are somewhat delayed in emergence. Under field conditions mg plants attain normal size and are fully viable. No linkage data are available but this should prove to be a useful seed trait.

R.J. Lambert and G.F. Sprague

Knob composition of commercial inbred lines

Over the past few years, we have made considerable progress in understanding the genetics of flowering time in maize. As a part of our studies, we have determined the knob composition of a number of inbred lines. These include some of the currently used inbreds, or those which have been used extensively in the present day maize germplasm in the U.S.A. The cytological analyses regarding the number, size and position of knobs were performed with acetocarmine squashes of microsporocytes mostly at pachytene stage during meiosis. With regard to size, the knobs were divided into six arbitrary classes. This classification was subjective since no attempt was made to measure the size of the knob.

Table 1.	Number,	size and	l position	of het	erochron	natic k	cnobs in	maize	(Zea	mays L	.) inbreds	and	varieties.

.+

Daid's weller	(Dent x Elist)	Louiz	USDA	V O		Le			-	12			
dent	(Dent X Flint)	Lowa	PI 408705			VL				VL			e
Lancaster Sure Crop	(Dent x Flint)	lowa	USDA PI 213697							VL			1
814	8555	lowa	U. of Ill., J.R. Laughnan			L				ι		ML	3
A632	(Mt42xB14)B143	Minnesota	U. of Ill., J.R. Laughnan	s		VL				L		м	4
A634	(Mt42xB14)B143	Minnesota	U. of Ill., J.R. Laughnan	L		1			м	L		s	5
A635	(ND203xB14)B142	Minnesota	U. of Minn., R.H. Peterson			ι				ι			2
B37	BSSS	Iowa	U. of [11., R.J. Lambert			L				L			2
B73	BSSS, cycle 5	lowa	U. of Ill., R.J. Lambert	s		L				ι		ML	4
A640	ND203xB14	Minnesota	U. of Minn.,		ML	L				L			3
A631	(A509 X WF9)WF9 ₃	Minnesota	U. of Minn., S(?)			ι				ι			3
A659	Minn, Syn. 3	Minnesota	U. of Minn., L(?)			L				L-			3
A685	(ND203 X A635)A6353	Minnesota	R.H. Peterson			ι				VL VL		VS	3
A641	ND 203 x814	Minnesota	R.H. Peterson U. of Minn.,		ML	L				L			3
CM105	VaxB14a	Canada .	R.H. Peterson		5	1						ML	4
CM109	V-v814-	Morden	Intl.	s								MI	3
UED	Hilcon Farm	Morden	Intl.	1 (2)					S-M	VI	-		
WF 9	Reid sel.	Inutana	C. Wilson	L (1)					3-11	VL.			
(Krug)	dent sel.	Illinois	Missouri, M.S. Zuber			VL			м	VL.			3
0h43	Oh4OBxW8	Ohio	U. of Ill., J.R. Laughnan			L	S(7)	s		L		M	5
0h45	0h408xW8	Ohio	U. of Ill., J.R. Laughnan	м		L		s		L		S-M	5
Va26	Oh43xK155	Virginia	U. of Ill., E.B. Patterson			L		S	5	L			4
0h545	[(M14x187-2)Oh45] x [(45Ax45T)Oh45]	Ohio	U. of Ill., R.J. Lambert			L				L		L	3
A619	(A171x0h43)0h43	Minnesota	U. of Ill., J.R. Laughnan	L		VL		s		٧L		ML	5
LH38	A619xL120	Holden's	Holden's, Iowa	ù	ι	ι				L			4
C103	Lancaster Sure Crop sel.	Connecticut	U. of Ill., E.B. Patterson									L	1
Mol7	CI187-2xC103	Missouri	Missouri, M.S. Zuber							L			1
W23	Gold Glow sel.	Wisconsin	U. of Ill., E.B. Patterson	ι				S	S(?	L		s	5
F2	0.P. Lacaune	France	Funk Seeds									м	1
RSSSC	Stiff Stalk Synthetic, Illinois version	Illinois	U. of Ill R.J. Lambert from S. Eberhart,		L.	ML	L(?)		s	L		м	6
Minnesota 13	Reid's yellow dent sel.	Minnesota	U. of Minn., R.H. Peterson		ι	ML		s		VL			4
ND203	Haney Minn. 13	N. Dakota	N.D. State Univ.	L(?)			L			ι		VL	4
Early Early Synthetic	d	Illinois	U. of Ill., D.E. Alexander									٧S	1

97

.

Table 1, continued

Inbred/Race/ Variety	Derivation	Knobs on Chromosomes*+														Total
		Origin	Source	$\frac{1}{1-5}$	2 L S	$\frac{3}{L-S}$	4 L S	5 L S	L ₁	6 L2	L ₃	7 L \$	L ₁	8	<u>9</u> S	Number of Knobs
Minnesota Early Synth.		Illinois	U. of 111., D.E. Alexander	\$(?)			L					L			5	4
Argentine Flint**	Colorado majorado sel.	Nebraska	Hoeg Hybrids, L.C. Hoegemyer		ML		ML					Ĺ	М	S		5
Apachito**	Mexican race	Mexico (CIMMYT E-7)	N. Carolina, M.M. Goodman	5(?)	S		S			\$						4
Azul**	Mexican race	Mexico (CIMMYTE-10)	N. Carolina, M.M. Goodman			ML(?)	L(?)					L(?)				3

[†]Henderson (1976, 1980) and Baker (1984).

^{*}No knob was found on chromosome 10. *L and S denote the long and short arm of the chromosome, respectively. Knob positions according to McClintock <u>et al</u>. (1981).

Size classes (in the body of the table):

VS = very small S = small = medium Μ ML = medium-large L = large VL = very large

(?) = the identification of the knob is not positive.

(1) - the fuencing and the Mexican finits (Apachico and Azul) have one and two B chromosomes, respectively. d = derived by D. E. Alexander from these inbreds: ND276, W103, Co131, WD, CMV3, Tom Thumb, Gaspe Flint, ND1, and some others.

The data presented in Table 1 provide information on 35 inbred lines regarding the number, size and position of knobs together with some background information. The knob number ranged from 1 to 6 with most lines having 3 to 4 knobs. Of 23 possible locations, the knobs were found at 13 in the lines analyzed. The knob on the long arm of chromosome 7 (7L knob) was the most frequent, being present in all the lines (or races) except C103, F2, Apachito and Early Early Synthetic. Two other knobs were also found with high frequency; one on the long arm of chromosome 4 (4L) and the other on the short arm of chromosome 9 (9S). The knobs on chromosome 1 were the least frequent while no knob was observed on chromosome 10. Two Mexican flints (Apachito and Azul) and the Argentine flint (Colorado Halidaisi majorado) have supernumerary B chromosomes in their genomes. Three flints, Wilbur's, Parker's and Tama (not shown in the table), were also analyzed, and as expected none had a cytologically observable knob.

The Lancaster Sure Crop and its derivatives such as C103 and Mo17, the cold tolerant French inbred F2, and Early Early Synthetic (probably the earliest maturing line of maize) had only one knob. The inbreds related to Oh43 family have the highest average knob number while those related to Iowa Stiff Stalk Synthetic have an average knob number intermediate between those of the Lancaster derivatives and the Oh43 family.

Sajjad R. Chughtai and Dale M. Steffensen

Some insights into the genetics of flowering time

Heterochromatic knobs in maize exhibit a highly nonrandom geographical and racial distribution in spite of the apparent polymorphism for their number and size. The frequency of knobs, and even the size of a given knob in a particular race, is inversely related to the changes in latitude and altitude. Furthermore, the knob number is positively correlated with the time to reach maturity. Generally, low knob lines flower before high knob lines.

The maturity and flowering time in maize have long been considered quantitatively inherited characters. However, a large number of studies have failed to resolve

98

the major controversy regarding the number of genes that differentiate parental lines with respect to flowering time; the estimates range from as few as two genes to as many as twenty-nine (see references in Bonaparte, Can. J. Genet. Cytol. 19:251-258, 1977).

For about 4 years, we have gained insights into the genetics of flowering time in maize. The focal point has been to elucidate the role of knob heterochromatin in determining the rate of floral development. Undoubtedly, the genetics of flowering time is not simple. We have been able to partition variously involved factors. Certain factors have proved critical in the analysis, especially inbreds and varieties with various genetic backgrounds that are essentially day-length neutral. The knobless genotypes with their F1's and F2's have been most important since they provided a simple genetic system.

Since the rate of development is related to the number of knobs, our first assumption was to consider the degree of delay in pollen shedding in relation to knob number. One might expect that the higher the knob DNA content, the longer the cell cycle would be and thus the slower the development. This simplest model proved to be incorrect in crosses using Zapalote chico, a high-knob Mexican race; the F1 hybrids flowered at more or less the same time as the knobless or low-knob parent. Similarly, the F1 hybrid between Zapalote grande (another high-knob and late maturing Mexican race) and the knobless Tama flint flowered at precisely the flowering time of its knobless parent during the 1st week of January, while Zapalote grande did not flower until the last week of February in our winter 1984-85 nursery at Molokai, Hawaii.

In our summer 1985 planting at Urbana, the knobless flints (Tama, Parker's and Wilbur's) were extensively crossed to a large number of inbreds of diverse genetic backgrounds. The parents and the F1 progeny from a multitude of crosses were grown out in our New Zealand and Molokai winter 1985-86 nurseries. With very minor exceptions, the F1 hybrid corresponded in flowering, within a day or two, with the knobless parent regardless of the knob composition, maturity group or the genetic background of the other inbred parent. Simply stated, the knobless genotypes are completely dominant over the genotypes with knobs and the knobless parent determines the rate of development in these hybrids.

Further analyses regarding the segregation of knobs in the F2 generation enabled us to understand the genetics. Initially, the segregation of knobs was followed in F2 progeny of crosses of Wilbur's knobless flint to four inbreds, KYS, A634, Oh43 and A619, each with 5 knobs. Not unexpectedly, "polygenic" inheritance-type data were obtained. The data from crosses of the knobless flints to low-knob inbreds made the picture clearer. The F2 progeny from such crosses did segregate in a discontinuous fashion, rather than continuous. The F2 progeny gave a bimodal distribution pattern when segregating for a single knob. The large F2 populations from selfed F1's involving the genetically related inbreds with known knob compositions (i.e., B14 imes B37, B14 imes A635, B14 imesB73, and Mo17 \times C103) were analyzed in 1986 plantings at Urbana. These are segregating for only one or two knobs and thus served as the model system. These and various other crosses exhibited a discontinuous and simple Mendelian inheritance pattern. From these data we conclude that each homozygous knob combination (e.g. 9S/9S) delays plant development by three to four days. A heterozygous knob has no delay effect. Thus, the delay in development and the later time of flowering is positively correlated with the number of homozygous knobs. In simple terms, it is not just the number of knobs nor the amount of knob DNA, but the number of homozygous knobs causing delays. The observation that homozygous knobs delay development is consistent with the association between knob number and the time to reach maturity for the races of maize. Our best data are for 4L, 7L and 9S knobs. Interestingly, these are the most frequent knobs in U.S. corn belt inbreds. Other knobs are being analyzed.

Since the amount of knob DNA is not related to the rate of development and thus its effect in delaying development is not via lengthening the cell cycle, our alternate hypothesis is that knob DNA affects development via controlling the expression of the bracketing genes by a cis-acting position effect. The examples of cis-acting position effect variegation showing spreading effect that might involve DNA binding proteins are well known in *Drosophila* and mammalian X-chromosome inactivation.

We propose the presence of a protein that specifically binds to 180-bp repeat of knob DNA, brings about a conformational change and is probably involved in condensation of the knob DNA which could shut the neighboring genes off by a spreading effect.

The proposed hypothesis could explain the complete dominance of the knobless genotype, the knob-mediated developmental delay in homozygous and its absence in heterozygous knob condition. Thus, the F1 hybrids between knobless and knobbed inbreds involve the co-existence of "two genomes" which differ temporally in their RNA and DNA synthetic activity. Since replication and transcription are temporally correlated, the knobless genotype should replicate early in the S phase, and so most of these newly replicated genes will be expressed. On the other hand, those genes closely linked to knobs will not replicate until the end of S when the knob DNA replicates (Pryor et al., Proc. Natl. Acad. Sci. 77:6705-6709, 1980).

If our working hypothesis on the role of knob DNA in gene expression is correct, then it might provide clues to understanding the dogma of hybrid vigor and combining ability. For example, in crosses between knobless (or low knob) and high-knobbed inbreds (e.g., $Mo17 \times B73$ with good combining ability), the early replication and expression of knobless genome coupled with the late expression of knob-controlled genes will provide overlapping and extended periods of gene activity.

Studies are being actively pursued to test our various predictions, especially the role of knob heterochromatin in maize development.

Sajjad R. Chughtai and Dale M. Steffensen

A correlation between knob number and leaf number—a counting mechanism

Most of the very early races or lines of maize have only 9 or 10 leaves at maturity. Since their mature seeds already have 5 or 6 preformed leaves, the remaining 3 or 4 must have cell initial areas that are already present in the apical dome. Since ears are initiated at the base of leaves 3 or 4 in mature seed, the anlagen of ear buds should be in place. Also the cells at the top of the dome, which form the tassel, should have more preformed cells than lines that grow a lot more.

One of the earliest selections that we know about is Early Early Synthetic (EES) from D. E. Alexander. EES is knobless except for a very small knob at 9S. Its background is mostly Gaspé. It is well known that Northern races and knobless flints are the earliest to come to maturity. If one plots the number of homozygous knob sites on one axis and the number of leaves on the other, a rather good correlation results. Knobless or low knob lines (1-2) have the fewest leaves. Intermediates with 3 to 5 knobs have more leaves and of course Southern and Mexican races (6 to 16) have the most leaves. Our morphological and cytological observations would suggest that knobs have a function to delay flower formation by controlling the initiation of more leaves. Since this significance on flower regulation was only realized during the summer of 1986, considerably more information must be obtained. However enough is known now about the maize of North America (Chiapas to Canada) to be convinced of the proposed correlation. Finally, it appears that the placement of the topmost ears may be the best predictor of maturity. The pre-set placement of the ear on the shoot is under genetic control and regulated by knob composition. At tasseling the ear also takes over apical dominance. This switch of dominance is of theoretical and practical interest.

Dale M. Steffensen and Sajjad R. Chughtai

Mapping genes for ear development

During a study designed to locate zein polypeptides on chromosome 4, an unrelated phenomenon was discovered involving ear development. The progeny exhibited segregation from a cross of the female, W153R/T4-9g (4 S.27;9L.27), to pollen of Mo17, for the size of the ears. The large ears with large shanks having 8 or 9 nodes were the semisterile plants. Plants with normal pollen had smaller ears and shorter shanks. This "hybrid vigor" persisted in the second and third backcross generations using the semisterile female plants crossed to Mo17. All types of crosses have been made to Mo17 using other translocations with chromosome 9 (not with 4) and several different chromosome 4 translocations not involving 9. Other inbreds were used in the same test. Thus far the ear factor(s) follows chromosome 4 of Mo17.

Another genetic feature surfaced in the third backcross generation of T4-9g/Mo17 \times Mo17. Semi-sterile plants flowered three days earlier than sibs with normal pollen. There was a bimodal distribution with little overlap. In our knob studies with Mo17 we found a gene, which we call "delay factor." This delay factor slows down tassel and ear development toward the end of maturity. It could be related to the increase of the number of nodes in the shank. Conventional genes on chromosome 4 are being used to map this delay factor. Zein genes are included. C103, one of the parents of Mo17, seems to possess this delay factor. Lancaster and other derivatives would be expected to transmit it too.

> Dale M. Steffensen and Sajjad R. Chughtai VICTORIA, BRITISH COLUMBIA, CANADA University of Victoria

An unstable factor for orange pigment

In the 1982 News Letter (p. 160) we reported on an unstable pigmenting factor sent to us by Dr. Charles Burnham. The pigment determined by this factor is similar if not identical to the *P*-controlled (phlobaphene) pigment normally produced in the cob and pericarp, but the factor is different from *P* in that the pigment may form in any or all tissues, and concentrations can be excessive. Sectoring is common, but unpredictable.

Although we have not yet been able to obtain stable lines of this 'Burnham factor' with predictable distribution and concentration patterns, we have been able to obtain some information on its inheritance, expression and function.

Inheritance: The factor, tentatively designated Ufo (Unstable factor for orange), is dominant, and, from reciprocal cross data, is fully and equally male and female transmissible. It segregates independently from P and sm.

Interaction with other genes:

a) Ufo expression requires P-WR or P-RR. It is not expressed in P-WW or P-MO plants, and it has little or no expression with an intermediate 'grainy' pericarp P allele (obtained from the collection of P alleles backcrossed into 4 County 63 by R.A. Brink (see MNL 40:149-160,1966).

b) sm (salmon silk) normally behaves as a recessive in the presence of *P-RR* or *P-WR*, but behaves as a dominant in the presence of *Ufo*, e.g., *P-WR Ufo*/+ *Sm/sm* plants have salmon silks.

c) C2-Idf inhibits the expression of Ufo. P-WR C2-Idf/C2 Ufo/+ plants are green, but these plants when selffertilized yield C2 Ufo/+ progeny that are orange.

d) al P-WR Ufo/+ plants are brown in tissues that would be orange in otherwise similar Al plants.

Function: The P locus controls the formation of flavones, the 3-deoxyanthocyanins (the salmon silk pigments), and the (leuco) flavan-4-ols that polymerize to form the visible phlobaphenes. One possibility is that Ufo may block flavone synthesis and thereby cause an excessive build-up of phlobaphenes and 3-deoxyanthocyanins. This appears unlikely, as Ufo tissues seem to have normal amounts of flavones, at least at developmental stages just prior to the formation of the orange pigment. Effect on growth: A notable effect of Ufo is that plant and tissue growth is retarded in direct proportion to the concentration of the pigment. Testcrosses of P-WR plants heterozygous for Ufo produce Ufo/+ progeny that are on the average 20% shorter than their +/+ sibs. Homozygous Ufo plants are usually very short, and silk growth is minimal, making it difficult to maintain true breeding lines of Ufo in a form or a background that allows strong expression.

E. Derek Styles, Bita Erfanifar and Oldriska Ceska

WALTHAM, MASSACHUSETTS University of Massachusetts

Phase change involves a two-gene switching system

There is morphological evidence that the switching off of one phase and turning on of the next phase are independent genetic events. In the case of the corngrass (Cg) and teopod (Tp) mutants, the floral phase may be turned on without the vegetative phase being switched off. The overlapping and sometimes simultaneous expression of both phases accounts for the phenotypes of these mutant genes. When the vegetative phase is finally shut down, the demarcation is not always at right angles to the axis but the switching may follow along wedge-shaped sectors flowing up into the pure floral region. This is suggestive of an Activator-Dissociator type of action such as the somatic cell heredity known for aleurone color.

If two independently acting genes are responsible for this type of phase change, then a state should also be found in which the vegetative phase is turned off but the floral phase is not yet turned on. Since both the vegetative and floral phases have nodes, this hypothetical state with a barren axis might also have nodes or at least rudimentary nodes. Since the pre-phase non-specialized condition is one of short internodes, the barren nodes would be close together. Since an Activator-Dissociator type of switching is envisioned, the interface between the pre-phase barren axis and any eventual switch to the floral phase should sometimes follow wedge-shaped sectors. The delayed switch to the floral phase should affect both tassel and ear. It is expected that by a year from now, I shall be able to report on the inheritance of such an interrupted phase change condition.

One problem is how a given complex of genes becomes identified with one switching element, like an antibody with an antigen, and another complex of genes with a second switching element. Another problem is how the two switching elements normally synchronize their on-off activities during phase change. Perhaps the mutant genes that cause defective switching may be utilized to reveal the genetic process of switching and the control of morphogenesis.

Walton C. Galinat

New evidence supporting multiple domestications

The different patterns of chromosome knobs and other diverse traits of maize have led McClintock, Randolph and Kato to independently suggest that modern maize stems from multiple domestications of its wild ancestor.

New evidence supporting at least two independent domestications from two different teosintes comes from

the comparative morphology of the cobs and kernels of two ancient indigenous races of maize from Mexico. It appears that the emergence of the maize kernel from the cupulate fruit case of teosinte about 8,000 years ago was accomplished by two different systems during two or more independent domestications. Understanding these systems has a bearing on corn improvement. In the Nal Tel-Chapalote system, the kernel emerged by an elongation of the rachilla within the female spikelet. In the Palomero Toluqueno system, emergence was by way of an elongation of the kernel while its rachilla remained short. The present descendants with cobs based on rachilla elongation are most common in U.S. corn, especially in the Northern Flints. The second system, by kernel elongation, has among its descendants the Gourd Seed - Shoe Peg types and, to a lesser extent, the Southern Dents in general.

The Corn Belt Dent is known from historical records to be a hybrid between the Southern Dents and Northern Flints. Much of its heterosis appears to stem from combining these diverse parents. Further back, the source of the heterosis may stem in part from either early isolates of domesticated teosinte or from independent domestications of two different teosintes.

It is suggested that the Nal Tel-Chapalote system came from domesticated Guerrero teosinte while the Palomero Toluqueno system came from Chalco teosinte.

Walton C. Galinat

The use of Palomero Toluqueno (white rice popcorn) in sweet corn improvement

Historically, U.S. sweet corn has had its evolutionary roots in the Northern Flint-long rachilla type of cob. Yet in recent years the consumer demand has been for deep kernels and a high number of kernel rows. These are characteristics of the Palomero Toluqueno - white rice popcorn type of cob and kernel. We have made progress in sweet corn improvement by going directly to the source of these traits. The thick pericarp of this popcorn is easily removed by breeding. The vestigial glume gene may have to be used with this material in order to allow full eating access to its deep kernels. With little or no rachilla to elevate the kernel above the chaff, there would be serious interference with attempting to eat intact kernels off from the cob.

Walton C. Galinat

The origin of thick-cob, eight-row maize

Previously I have reported that the string cob trait is controlled by two incompletely dominant genes (Galinat, MAES Bul. 577, 1969). It appears that all of the most ancient cobs from dry caves in New Mexico, Tehuacan-Mexico, Panama, Venezuela, Ecuador and Peru carry the string cob trait and are eight-rowed. In each case where a sequence was available leading to more productive ears, the first steps involved an increase in both the number of kernel rows and the thickness of the rachis. Much later, sometimes thousands of years later, thick-cob, eight-row types of ears bearing large kernels appeared, all of independent origin. Apparently the thick-cob, eight-row types of ears are a result of recombination between the thick cob, high-row types and the slender cob, eight-row types. This conclusion is based both on archaeological remains and on experimental results.

In the American Southwest, the source of the two recessive genes for thick cob was the 12 to 14 rowed race, Chapalote, while the more primitive eight-rowed condition was probably derived from persistent remnants of the original maize to reach the area, or less probably due to row-number reductions from teosinte introgression. That the reduction in row number may leave the previous vascular supply system of the higher ranking intact was observed first by Laubengayer (Ann. Mo. Bot. Gard. 35:337-342, 1948). Increased vascularization in eightrowed maize may lead either to induration of the rachis if the kernels remain small, or to increased kernel size and rachis size. Maiz de Ocho took the large-kernel, thickrachis pathway and with the day-neutral, early flowering traits, it was the frontier maize in the spread of maize to the North and Northeast.

Walton C. Galinat

On the return of a hopeful monster: cauliflower ear maize

The first cauliflower ear of maize was reported by Collins (Smithsonian Inst. Report Plate 25, 1937). It was a result of combining homozygous ramosa (ra ra) with heterozygous full tunicate (Tu tu) in a family segregating these two genes. The combined phenotype of these two genes is a cauliflower ear monster incapable of propagation except as a recombinant in a segregation. But now, 50 years after its first appearance, this monster has returned with renewed hope for a successful role in macroevolution.

Since the early observations of Collins, mutations to intermediate tunicate alleles (tu-l and tu-d) have been discovered by Mangelsdorf (Mangelsdorf and Galinat, P.N.A.S. 51:147-150, 1964), and in contrast with full tunicate, these weaker alleles may be propagated as homozygotes. We have produced the double homozygote (tu-l tu-l, ra ra) and have found that its phenotype is identical to that observed by Collins (1937) for homozygous ramosa with heterozygous full tunicate. That is, both are cauliflower sterile as a lateral ear in a background of modern dent corn. Apparently, an incongruous combination of genetic instructions causes the female flowers to abort in a parallelism to a head of cauliflower. Under internal conditions at a lowered level on the plant that cause the pistil to become extremely precocious, the combination of the tunicate (long glume) gene that further increases female earliness with the ramosa gene that puts developmental priority on a branching of the rachis results in an inadequacy by the supply system to function soon enough to nurture its spikelets. But in a different position on the same plant where pistil development is less precocious, such as the inflorescences of long tillers, the relational balance may be improved, female fertility normal and the way opened to successful macroevolution. The tassels of tunicate ramosa have normal male fertility.

Walton C. Galinat

Duplication of the nucleolus organizer in the genome of maize

Cytogenetic analysis was undertaken in an alien addition stock of maize derived from an intergeneric cross between recessive marker gene stock for chromosome 2 in the maize parent and *Tripsacum dactyloides* L. In this strain a duplication of the nucleolus organizing region (NOR) was observed. The two chromosomes, each carrying a segment of the NOR, form two distinct nucleoli each with a bivalent attached to it. Microsporogenesis is normal and at pachytene the two chromosomes involved in this cytologically visible abnormality do not show any pairing relationships. This accounts for the absence of higher associations like quadrivalents at diakinesis and metaphase stages of meiosis. The break must have occurred in the NOR itself, resulting in a breakage-transpositionduplication of the nucleolus organizer. At the tetrad stage of meiosis we can see two nucleoli in each of the tetrad cells. Occasionally one of the tetrad cells shows a single large nucleolus as a result of fusion. Since there is no deficiency they are all functional. This homozygous translocation is transmitted normally and the progeny breed true.

Chandra V. Pasupuleti

Cytological techniques for the study of maize chromosomes

A paper on the cytological techniques for the study of maize chromosomes is in the process of being published at the suggestion of Dr. Charles R. Burnham. The information and the technique are nothing new. But it is a specific, straight-forward, step by step procedure from the time of collection to the finish, including photomicrography, where the data are well documented with self explanatory photographs. It is made easy for a beginner, working on meiotic studies with special emphasis on the pachytene stage of meiosis in maize, where the morphology of the individual chromosomes is essential for cytogenetic analysis.

Chandra V. Pasupuleti

WILMINGTON, DELAWARE DuPont Experimental Station

Cloning of a *Ds1*-homologous element at the *A1* locus

The *a*-*m*-4 mutable allele of the anthocyanin locus, A1, originated from a wildtype A1 allele in a plant carrying the controlling elements Dissociation (Ds) and Activator (Ac) (B. McClintock, Genetics 38:579-599, 1953). Ac controls transposition both of itself and of Ds causing both insertional inactivation of genes and subsequent reversion (i.e., a mutable phenotype). Since *a*-*m*-4 mutability is controlled by, but unlinked to Ac, it is thought that the *a*-*m*-4 mutation resulted from a Ds insertion. Ds elements isolated so far fall into two classes based on their degree of homology with the Ac element. We were interested in identifying the Ds element thought to be present in *a*-*m*-4 and in determining its position relative to the A1 gene.

Molecular analysis of a-m-4 was facilitated by the availability of a cloned A1 gene and two cloned Ds elements for use as hybridization probes. To isolate a-m-4 clones we constructed a genomic library in lambda EMBL4 from an a-m-4 homozygous plant (no Ac elements present in the line, seed provided by M.G. Neuffer) and screened the library with an A1 probe (C. O'Reilly et al., EMBO J. 4:877-882, 1985). We then screened A1-homologous clones with the Ds probes derived from two different Ds elements; Ds1, which is nonhomologous to Ac (isolated from the wx-m1 allele, and provided by S. Dellaporta; S.R. Wessler et al., EMBO J. 5:2427-2432, 1986), and Ds-5933, a deletion derivative of Ac (isolated from the sh-m5933

allele, and provided by H.P. Döring; H.P. Döring et al., Nature 307:127-131, 1984). Three A1-homologous clones hybridized to the Ds1 probe but none hybridized to the Ds-5933 probe. Our preliminary results suggest that the mutability of A1 gene expression in the a-m-4 allele is due to a Ds1-homologous element.

We constructed a restriction enzyme map of a representative a-m-4 clone and determined the region of Ds1homology by Southern analysis and hybridization to the Ds1 probe (Fig. 1). A comparison of the preliminary a-m-4

Figure 1. The A1 and a-m-4 restriction enzyme maps shown are aligned at sites conserved between both alleles within the transcribed region. The arrow indicates the direction and extent of transcription of A1 (Schwarz-Sommer et al., EMBO J., in press). The bracket indicates the Ds1-homologous region of a-m-4.

data with a wildtype A1 restriction enzyme map showing the region of A1 transcription indicates that the Ds1homology is located toward the 3' end of the gene. The Ds1-homologous region is 3' of other transposons at A1: those reported in Zs. Schwarz-Sommer et al. (EMBO J., in press), the Mu1 element in a1-Mum2 (5' of the A1 transcription unit), the two rDt insertions in a-m-1:Cache and a1 (in exons 3 and 4), and the rMrh insertion in a-mrh(also in exon 4).

Differences in EcoRI sites between a-m-4 and A1 (shown in Fig. 1) may be restriction fragment length polymorphisms resulting from minor sequence alterations or from more extensive differences. Such EcoRI polymorphisms are common between A1 alleles (for example, A1 alleles reported in Zs. Schwarz-Sommer et al. EMBO J., in press; and a1, a-m-1:Cache alleles which were cloned on 10kb EcoRI fragments).

A genomic Southern blot of DNA from a-m-4 or A1 homozygous plants probed with a fragment of the wildtype A1 gene is shown in Figure 2. The sizes of the major hybridizing bands agree with the restriction maps constructed from a-m-4 and A1 clones. Maize genomic Southern blots probed with wildtype A1 sequences often result in one major hybridizing band and a second minor band, which may be either smaller or larger than the major band. As shown in Figure 2, this is the case with DNA prepared not only from plants carrying mutable alleles of A1, such as a-m-4, but also from those carrying a wildtype A1 allele. This might result from the presence of a second

Figure 2. Southern blot of $10\mu g$ per lane of EcoRI or HindIII digested genomic DNA isolated from either a-m-4/a-m-4 (lacking Ac) or A1/A1 plants and probed with a nicktranslated 0.6kb PstI restriction fragment of the wildtype A1 gene.

locus that shares incomplete sequence homology with A1. Alternatively, the minor bands may represent somatic rearrangements of A1 sequence in certain cells even when known transposons are not active in the genome. One A1-homologous clone isolated from the a-m-4 library seems to have the same structure as the minor bands seen on the genomic Southern of a-m-4/a-m-4 DNA (Fig. 2). We will analyze both the Ds1-hybridizing genomic a-m-4clone and this second type of genomic clone in order to determine their relationship.

J.J. Sorrentino and N.S. Shepherd

Sequence characteristics of the *rDt* controlling element

Dotted is a two-element transposon system consisting of the dotted element Dt, plus a second receptor element for Dt, rDt (M. Rhoades, J. Genetics 33:347-354, 1936). Dtnot only controls its own transposition, but also controls the expression of several alleles of the anthocyanin locus, A1. The presence of the rDt element in these A1 alleles is inferred from their mutability in response to Dt (B. McClintock, Cold Spring Harbor Symp. Quant. Biol. 21:197-216, 1956). To address the mechanism of Dtcontrolled A1 mutability, we cloned, sequenced, and determined the insertional position of rDt elements found in two mutable A1 alleles.

The alleles studied were a1, the standard recessive allele which probably originated from A-r (present in N. American races), and a-m-1:Cache, which originated from A:Cache (M.G. Neuffer, Genetics 46:625-640, 1961). Both alleles are recessive in the absence of Dt, presumably due to insertional inactivation of A1 by the rDt element. These two alleles also differ in their response to Dt, a-m-1:Cachebeing more mutable. To clone a1 and a-m-1:Cache, we constructed genomic libraries from plants carrying these alleles, and then screened these with an A1 probe (C. O'Reilly et al., EMBO J. 4:877-882, 1985). We characterized positive clones by restriction enzyme mapping and by nucleotide sequencing. These data, plus our previous data on the A1 gene itself (Zs. Schwarz-Sommer et al., EMBO J., in press), have allowed us to characterize the rDt element at the molecular level.

Comparisons of the restriction enzyme maps of A1, a1, and a-m-1:Cache identify similar 0.7 kb insertions in the latter two alleles. The sequences of the two insertions are very similar (>80% homology), but they are inserted at A1in opposite orientations. The ends of the insertion contain 11 bp inverted-repeats, and the insertion is flanked by a 9 bp direct-repeat of A1 sequence in each case. The insertions in a-m-1:Cache and a1 interrupt the A1 coding sequence in exons 3 and 4 respectively, and each generates a translational stop signal.

Since we found insertions of similar nucleotide sequence in two Dt-responding A1 alleles of independent origin, we believe the insertions are the rDt controlling element. The rDt element is 0.7 kb long and has molecular characteristics typical of other maize controlling elements; Ac, Ds, and Spm (terminal inverted repeats flanked by a target site duplication). As expected, the recessive null phenotype of both alleles can be explained by the rDtinsertion within the coding sequences of a1 and a-m-1:Cache. In this respect rDt is similar to Ds and other transposons, which can cause insertional inactivation of the gene.

> J.J. Sorrentino, C.O'Reilly¹, Zs. Schwarz-Sommer², H. Saedler² and N.S. Shepherd

> > ¹Sunderland Polytechnic, Sunderland, UK. ²Max-Planck-Institut, Cologne, FRG.

WOOSTER, OHIO OSU-Ohio Agricultural Research and Development Center

A flint type endosperm gene

An ear with small flint type endosperms was discovered in selfed progeny of Oh43, zpg-3 mutants. This phenotype is controlled by a recessive gene named sft (small flint type). The cross $sft/sft \times +/+$ (normal Oh43) produces all flint kernels and the reciprocal (+/+ \times sft/sft) all normal dent kernels. Selfs of F1 (sft/+, and reciprocal) plants produce ears with all normal dent endosperms. Flint type endosperms are not produced. Ears are well filled and appear normal. Endosperms of the backcross F1 \times sft/sft seeds are all normal and of the reciprocal $(sft/sft \times F1)$ all flint. Selfed plants from the above backcrosses produce ears which have either all small flint type endosperms or all normal dent endosperms. Thus, sft/sft plants produce only flint endosperms and sft/+ plants only normal endosperms regardless of the pollen parent genotype. The type of endosperm produced is dependent upon a contribution from maternal tissue. Gene action appears similar to that of the de-p1 gene reported by Mangelsdorf (1926).

E.J. Dollinger

YORKTOWN HEIGHTS, NEW YORK IBM T.J. Watson Research Center OSSINING, NEW YORK Brooklyn Botanic Garden Research Center

Chemically induced alteration of floral sexuality

Sex determination in monoecious plants like maize has been shown to be influenced by genotype, daylength, and plant hormones. In a recent series of experiments to determine the physiological effects of an anti-dehiscence chemical, 3-(p-chlorophenvl)-6-methoxy-s-triazine-2.4(1H, 3H) dione triethanolamine, DPX-3778 (E.I. du Pont de Nemours), the sex determination of the tassels was found to be altered depending on the concentration and timing of DPX-3778 application. Chemical treatments have been conducted on two hybrids (Seneca 60 and Golden Beauty) and an inbred (Oh43). Multiple applications of 0.005% DPX-3778 to the leaf sheath of maize plants or the addition of 1 ppm of DPX-3778 to hydroponic growth medium approximately 4 weeks before anthesis caused almost complete reversion of staminate inflorescences to pistillate inflorescences (Fig. 1 and 2). In addition to the normally developed gynoecium of the upper floret. DPX-3778 treatment resulted in the full development of the gynoecium of the lower floret of the ear spikelets. Both the spikelets in the tassel and ear inflorescences could produce viable seeds if pollination occurred (Fig. 3). The net result of DPX-3778 treatment is "male sterile" inflorescences. These results could be duplicated in northern teosinte (Zea mays subsp. mexicana, race Nobogame) (Fig. 4). Our results indicate that DPX-3778 could be useful for elucidation of sex determination in grasses.

P.C. Cheng and D.C. Wright

Figure 1. Tassel inflorescence of treated plant (var. Golden Beauty). Note the development of "silks" (S). The plant was treated with DPX-3778 at a concentration of 1ppm in hydroponic medium.

Figure 2. Female tassel spikelets from DPX-3778 treated plants. The treatment was conducted approximately at the spikelet-pair primordium stage. Note the two silks (SU and SL) developed from the upper and lower florets. The spikelet has its outer glume removed. Note the short pedicel of both spikelets.

Figure 3. Kernel arrangement on the ear of a DPX-3778 treated plant (var. Golden Beauty). Due to the development of lower florets which compete for space, the placement of kernels is no longer in regularly arranged rows.

Figure 4. Terminal inflorescence of DPX-3778 treated northern teosinte (Zea mays subsp. mexicana, race Nobogame). The chemical was applied to the plant at the 5th leaf stage (3rd "true" leaf stage), via hydroponic medium at a concentration of 1ppm. The spikelets are bisexual, however, the anthers usually do not reach maturation.

Key to labeling: S: silk, SU: silk of upper floret, SL: silk of lower floret, Sp: pedicelled spikelet, Ss: sessile spikelet.

III. ZEALAND 1987

* in symbol identifies loci needing documentation, symbol standardization and/or allelism tests
BS = base sequence; BSR = broad-sense heritability; gca, sca = general and specific combining ability; QTL = quantitative trait loci;
RM = restriction map; R/S = resistance/susceptibility or tolerance
r refers to numbers of references in the list of Recent Maize Publications CHROMOSOME 1 Adhl-Usey scenacional mutant from Adhl-S, BS --Brettell &, r60 bz2-mul Mul-elicited; modification of Mu elements correlated with loss of somatic reversion --Chandler &, r73; Walbot &, r657 dek22 on lL --Clark &, r83 Acp6, Adhl allozymes in Corn Helt dents, flints and South American dent populations; QTL associations in F2 from Wf9/Pa405 --Kahler &, r260, r261 Adhl BS, methylated sites --Nick &, r420 Adhl-15, Adhl-1F, 5' and 3' BS --Sachs &, r526 Adhl: Mul insert in intron --Vayda &, r645 Mp11, possible allele DB, approx. 4 mu distal to <u>1w1</u> --Harberd &, 61:23 PI-WR, f1, F1cl, Krnl, Zerl, Pd1, Tr1, bm2 linkages --Miranda &, 61:32,34 zb4 (5) F1 (9) nec2; dek1 (7) nec2 --Hoisington, 61:47 116, pg15, w25, Les5, Les5, Les5, 61:86 MP1370-P1, 412-Sod4 on 1s; <u>21-Adhl, 251-Phyl</u> on IL --Wright &, 61:89 Hypoploids for TB-1Sb and TB-La: endosperms, reduced kernel weight, plants, reduced height, leaf width; TB-LLa leaves shortened --Chang &, 61:91 CHROMOSOME 1 CHROMOSOME 2 rRNA5S, BS --Barciszewska &, r22 dek23 on 2L --Clark &, r83 PRI allozymes in Corn Belt dents, flints and South American dent populations; location on 2L, QTL in F2 from Wf9/Pa405 --Kahler &, r260, r261 rxi allozymes in Corn Belt dente, flints and South American dent populations; location on 2 bl-peru-mul Mul-elicited --Walbot &, r657 Fd2, Tr2, Ig1, g12, Flt2, Krn2, Lecl, Zer3, Bl, Fll linkages --Miranda &, 61:27,32 g12 (18) wtl (15) Lesl0; Bl (18) tsl (8) Lesl0 Hoisington, 61:48 nec4, v26, Lesl on 28; 118, gpt1, v24, Les4 on 2L --Neuffer &, 61:50 NF1248-Bl on 22; 348-Alrl on 2L; 347-EMu, 331-Ssu2 on 2 near centromere --Wright &, 61:89 TB-2Sa uncovers g12, B1-Peru, not wtl --Echt, 61:94 g114 (25) wtl --Sprague, 61:96 CHROMOSOME 3 CHROMOSOME 3 E4, Got1, Pgd2 allozymes in Corn Belt dents, flints and South American dent populations; QTL associations in F2 from Wf9/Pa405 --Kahler 6, r260, r261 al-m13, al-m16, Uq-regulated --Pereira 5, r471 Hext located by TB-35b; alleles -2, -3, -4, -5, -6, -m; E8 (24) Hext (17) Tpi4 (10) Pgd2 (24) Got1 (5) Mel (21) Mdh3 --Wendel 6, r670 brn1 (19) d1 (21) Lg3; brn1 (36) d11 Stinard, 61:6 122, Pd3, Fit3, Krn3, Tr3, al, Mer2 linkages --Miranda 5, 61:32 g119, Wrk1 on 35; spc3, Wull, Spc1 on 3L --Neuffer 5, 61:50 h1 (32) Cg1 --Poethig, 61:85 NF1231-Mel, 345-Tpi4 on 35; 51-Al on 3L --Wright 5, 61:89 Hypoploids for TB-35b and TB-3La have reduced plant height; TB-35b leaves pale green, TB-3La leaves short, erect --Chang 6, 61:91 al-m-4, Ds1 insert: RM; al, <u>al-m-1:Gache</u>, <u>rDr</u> inserts 0.7kb --Sorrentino 5, 61:102,103 CHROMOSOME 4 Fatty acid composition affected by 4L dosage, TB-4Lb --Shadley &, r564 prd*-1130, pitted endosperm, on 4L --Sheridan &, r573 c2-mu2 Mul-elicited --Walbot &, r657 CHROMOSOME 5 CHROMOSOME 5 Fatty acid composition affected by 5L dosage, TB-5La --Shadley &, r564 <u>a2=mu1, a2=mu2, a2=mu3 Mu1-elicited --Walbot &, r657</u> <u>Flt5, Krn5, Fas5, prl. Pd5, Tr5, Gerl linkages --Miranda &, 61:29,32</u> <u>anl1 distal to a2 --Coc, 61:47</u> <u>nec6, Msc2, Rgd2 on 5S; grt1, nec7, ppg1, wgs1, Hsf1</u> on 5L --Neuffer &, 61:50 <u>NF1369-FNy2, 345-Tp15 on 5S --Wright &, 61:89</u> Hypoploids for TB-5La endosperms, reduced kernel weight; plants, reduced height and leaf width; TB-5La leaves pale green --Chang &, 61:91 <u>sh5</u> not allelic to <u>sh4; sh5</u> (22) <u>pr1</u> --Sprague, 61:96 CHROMOSOME 6 CHROMOSOME 6 Enpl. Idh2, Mdh2, Pgd1 allozymes in Corn Belt dents, flints and South American dent populations; QTL in F2 from Wf9/Pa405 --Kahler &, r260, r261 TDNA spacer, R8; new site in tripsacoid maize --Lin &, r326 rDNA spacer, R8; --McMullen &, r372; Tolczyki &, r622 Hex2 located by TB-6L; alleles -0.5, -1, -1.7, -2, -2s, -3, -4, -6, -n; Pgd1 (3) Enpl (29) Pl1 (13) Hex2 (43) [Idh2 (2) Mdh2] --Wendel &, r670 Adkl located by TB-6L; alleles -0.5, -1, -1.7, -2, -2s, -3, -4, -6, -n; Pgd1 (3) Enpl (29) Pl1 (13) Hex2 (43) [Idh2 (2) Mdh2] --Wendel &, r670 Adkl located by TB-6Sa; Adk1 (8) rgd1 (8) Pgd1 (4) Enpl --Wendel &, 61:19 yl, pyl, Tr6, Pd6, Krn6, FIE6, Zer2, Plp linkages --Miranda &, 61:32 ga3 on 61: --Neuffer &, 61:50 NFI330-Me2, 229-Pdk1 on 6L --Wright &, 61:89 Hypoploids for TB-6Lc in endosperm have reduced kernel weight, in plants reduced height and leaf width --Chang &, 61:91 CHROMOSOME 7 El allozymes in Corn Belt dents, flints and South American dent populations --Kahler &, r260 FlF7, Krn7, Faa7, Bn1, Ger2 linkages --Miranda &, 61:29 v27, w1u2 on 71; Les9 on 7 --Neuffer &, 61:50 NFI349-Alr2, 419-Sod2 on 71 --Wright &, 61:89 Hypoploids for TB-7Lb in endosperm have reduced kernel weight, in plants short, erect, dark green leaves -- Chang &, 61:91 CHROMOSOME 8 ms43 uncovered by TB-8La --Golubovskaya &, r177 Krn8, Fas8, Flt8, Ger3 linkages --Mircode (61 <u>mais</u> uncovered by IB-BLa --Golubovskaya &, f1// KrnB, Fas8, F1LB, Ger3 linkages --Miranda &, 61:29,34 <u>hcf#-1113-3</u>, <u>Mu</u>-elicited; uncovered by TB-BLc --Cook &, 61:44 <u>v21</u>, <u>w1u3</u> on BL; <u>Clt1</u>, <u>Bif1</u>, <u>Sdw1</u> on 8; <u>pro1</u> (33) <u>ms8</u> (12) <u>j1</u> (9) <u>de*-1386A</u>; <u>Bif1</u> (27) <u>pro1</u> (45) <u>v16</u> (23) <u>de*-1386A</u> --Neuffer &, 61:50,51 <u>NPT344-Tp13</u> on 85; <u>119-HBp1</u> on 81; <u>s200-Pdk2</u> on 8 <u>near</u> centromere; <u>368-Act1</u> on 8 --Wright &, 61:89 <u>Hypoploids</u> for TB-BLc have dark green, short, broad leaves --Chang &, 61:91

CHROMOSOME 9 bzl=E1, -E2, -E3, -E4, -E5, -E6, -E7, -E8, -E9, -E10, EMS-induced; -m2(DI), -m2(DII) from bzl-m2 --Dooner, r116; Dooner &, r118 Acpl allozymes in Corn Belt dents, flints and South American dent populations; QTL associations in F2 from Wf9/Pa405 --Kahler &, wxl RM, BS of genomic and cDNA --Klosgen &, r283 Casl near centromere; RM --McCarty &, r369; Behrendsen &, 61:60 Cl RM; cl-m668655, -m668613 En insert, cl-m2 Ds insert --Paz-Ares &, r462 bzl-mul, bzl-mu2 Mul-clicted --Walbot &, r657 vxl, Fit9, Krn9, Ger4 linkages --Miranda &, 61:35 Sh1 5' region, DNaseI hypersensitive sites --Frommer &, 61:44 baffu, barten-stalk-fastigiate, uncovered by TB-9Sb, close to w11; bz1 (<10) 17; bk2 (5) v30 (19) Wc --Coe &, 61:46 wlu4 on 91; Zb8, Les8 on 9; G6 distal to TB-9Sb, G6 (18) wxl --Neuffer &, 61:50,51 Saz close to bz1 --Gupta &, 61:57 QTL for plant height very close to d3; NPI-probe RFLP map for chromosome 9 --Helentjaris &, 61:88 MPII-Bz1, 15Sh1, 16Wxl on 95; 332-Pep, 121-Css1 on 9L --Wright &, 61:89 Hypoploids for TB-9Lc in endosperm have reduced kernel weight, in plant reduced height, yellow green leaves --Chang &, 61:91 CHROMOSOME 9 -Kahler &, r260, r261 CHROMOSOME 10 r1-rin46, n142, n35, n101 (ex R1-ristandard); r1-g:1557-2 (ex r1-rin35); R1-sc:124 (ex R1-st); r1-m1, -m3, -m9 (Ds-elicited from R1-sc:124); r1-ginc3-5 (derivative of R1-st); R1-g:Bale (variant of R1-g:8, ex R1-ristandard) alleles --Dooner 6, r118 Sn1, derived from r1-ch:bol1, -bol2, -Co-op: 1.5 mu distal to R1 --Gavazzi 6, r171; Consonni 6, 61:75 Glud allozymes in Corn Belt dents, flints and South American dent populations; QTL associations in F2 from Wf9/Pa405 --Kahler 6, r260, r261 Fatty acid composition affected by 10L dosage, TB-10L19 --Shadley 6, r564 wx1-m1, Ds excisions Wx1-S5, -S9, RM, BS --Wessler, r674 Fit10, Krn10, Ger5 linkages --Miranda 6, 61:34 orp2 (19) r1 --Neuffer 6, 61:44 g121, 119, Les6 on 10S; 113, v29, Vsr1 on 10L --Neuffer 6, 61:50 Hypoploids for TB-10L19 in endosperm have reduced kernel weight --Chang 6, 61:91 CHROMOSOME 10 UNPLACED UNPLACED hcf*-Mu106, hcf*-Mu122 --Barkan &, r23 bno*-7478, brown opaque endosperm; cp*-1418, collapsed endosperm --Sheridan &, r573 yll, yl2, mgl --Sprague, 61:96 Ufol, unstable factor for orange --Styles &, 61:100 <u>aftl</u>, small flint type --Dollinger, 61:103 CHLOROPLAST CHLOROFLAS1 atpB, BS; promoter deletion mutants map its structure ---Bradley &, r52 rbcL 3' non-coding region hybridizes to junctions of inverted repeat --Brears &, r59 mtDNAS1 sequence homologies to ctDNA-psbA --Sederoff &, r560 psbC RN, BS --Steinmetz &, r592 rDNA5S, tRNA-Arg(ACG), tRNA-Asn(GUU) and intergenic regions, BS --Dormann-Przybyl &, r120 MITOCHONDRION <u>cms-T</u>, RM, altered transcribed sequences --Abbott &, r1 <u>cms-S</u>, S2 plasmid, RM --Bedinger &, r30 BS of inverted repeats in <u>cms-Vg</u> S1 and S2 vs. main mtDNA and in <u>cms-Vg369</u> (revertant) and normal --Braun &, r58 Map locations of <u>cox1</u>, <u>cox17</u>, <u>cob</u>, <u>atpA</u>, rRNA5S, rRNA16S, <u>rRNA26S</u> --Dawson &, r101 <u>cms-T</u> gequence TURP2R13, BS and hybridizations to <u>atp6</u>, rRNA26S, tRNAReg --Dewey &, r108 <u>cms-RD81=47-13</u>, <u>-15</u>, <u>-16</u>, <u>82-1179-16</u>, <u>78-419-13</u>; <u>cmm-ML81H-51-1</u>, <u>78-409-7</u> revertants; S1, S2 plasmid content is nucleus-dependent --Escote &, r139 <u>cms-S</u> cytoplasms carry autonomously replicating RNA plasmids --Finnegan &, r152 <u>Direct repeat 5.27kb</u>, intragenomic recombination sites adjacent to R1(S1) and R2(S2): BS --Houchins &, r234 <u>atpA</u>, BS; 2 copies in B37N, 1 in <u>T</u>, <u>C</u> and <u>S</u> --Issac &, r243 <u>cox1</u>, BS; Wf9N vs. <u>S</u> in region of R1 adjacent --Leave &, r319 <u>cms-T1</u> isolated from progeny of <u>j1</u> plants --Leave &, r418; Feiler &, 61:45 S1 sequence homologies to ctDNA-psbA --Sederoff &, r560 URF13-T, ORF25, <u>atp6</u> regions in N, <u>cms-T</u>, <u>and</u> fertile revertant V3 --Fauron &, 61:90 MITOCHONDRION TRANSFOSABLE ELEMENTS (see also specific loci affected) <u>Ac</u>, <u>Ds</u>9, <u>Ds</u>6, <u>Ds</u>2d2 maps; <u>Spm=s</u>, <u>Spm=w</u>, <u>dSpm=8</u>, <u>dSpm-73</u>, <u>dSpm-7997</u>, <u>dSpm-8004</u> maps --Banks &, r20 <u>Mul.4837</u> element, RM: modified relative to <u>Mul</u> --Chandler 6, r72 <u>Ac</u>: defects in <u>wx=m9(Ds</u>), in ORF1, and <u>bx=m2(D1)</u>, in ORF2, do not complement for transposition -Dooner 6, r117 <u>Ac</u>, errata for BS --Muller-Neumann &, r <u>408</u>; English &, 61:81 <u>En-1</u> BS --Pereira &, r470 BS1, T286 insertions, <u>Uq</u> --Peterson, r473 <u>Uq</u>, <u>Mrh</u> in BSSS --Peterson &, r477 TRANSPOSABLE ELEMENTS (see also specific loci affected) cDNA/GENOMIC CLONES/PROBES PEP carboxylase clone pPC2 hybridizes to 1-2 two major bands; RM --Harpster &, r218 PP-ePrv carboxylase clone pR1 hybridizes to 3+ bands; Prv,PI dikinase clone pH2 to 2+ --Hudspeth &, r237 Triosephosphate isomerase clone hybridizes to 9+ bands; BS --Marchionni &, r352 Zein clones for Mr 22,000, 19,000 and 15,000, homologies among and between, RMs and BSs --Marks &, r355, r366; Pedersen &, r465; Wang &, r660, r661 Glutathione-S-transferase III clone hybridizes to 1 band; BS --More &, r393 Poly (dT-dG).poly(dC-dA), 6,500 copies --Morris &, r401 Histone H4, 2 clones, RM, BS; multiple dispersed repeats --Philipps &, r482 Repetitive sequences: knob probe pZmK6 185bp, tandem arrays; ARS probes pZmAll11 525bp, pZmA311 600bp, dispersed and tandem --Rivin &, r512 Heat-shock protein 70, BS --Rochester &, r516 Glutathione-S-transferase I clone hybridizes to 1 band in Mo17; RM, BS --Shah &, r565 LHCP-II: 6 clones isolated, hybridizing to 6 of a family of about 12 genomic sequences --Sheen &, r570 cDNA/GENOMIC CLONES/PROBES RESISTANCE/TOLERANCE/HERITABILITY Selection for stalk strength in MoSQA and MoSQB associated with plant height, ear height, maturity, yield --Berzonsky 5, r37, r38 Inbreds show 56% variation over 11 generations, more in selfed than in sibbed progenies (10 lines, 10 traits) --Bogenschutz 5, r48 <u>Bipolaris maydis</u> race 0 R/S: up to 97% of variation additive, 2 to 47% dominance; BSH 30 to 69%; 2 to 15 factors --Burnette &, r66 R/S to bird damage correlated with husk weight, length and extension in sweet corns --Dolbeer &, r115 Allozyme selection; performance prediction by heterozygosity --Frei &, r156, r157 Kanamycin R transferred stably by electroporation into BMSI callus --From 6, r159 <u>Gibberella zeae</u> isolate U5373 R/S in 2 R vs. 2S inbreds: additivity predominates --Gendloff 5, r172 Delayed senescence and high stalk sucrose, 1 major dominant gene --Gentinetta 6, r174 Opine synthesis following <u>Agrobacterium</u> incoulation --Grimsley 6, r191 Recurrent selection in BSI3 and BSSS2 for cold tolerance --Hoard 6, r229, r230 Regenerability of hybrids dominant/semidominat --Hoard 6, r229, r230 Regenerability of hybrids dominant/semidominat --Hoard 6, r229, r230 Recurrent selection in Tuxpeno for reduced plant height --Johnson 5, r254 Frequencies, genetic distances for allozymes in Corn Belt dents, flints and South American dent populations --Kahler 6, r260 RESISTANCE/TOLERANCE/HERITABILITY

.

QTL associations with allozydes in F2 of Wf9/Pa405; segmental heterosis, overdominance --Kahler &, r261 Yield with grain-filling period, rate of fill and shorter lag period in diallel; gca > sca --Katsantonis &, r269 Ostrinia mubilalis R/S, recurrent selection in BS9 rapid for first-brood; less rapid for second-brood; yield reductions --Klenke &, r280, r282 High per se yield of random inbreds from BSSS partially dominant --Lamkey &, r304 Atrazine R/S BSU 0.66 in diallel --Le Court de Billot &, r315 Recurrent selection in BSS for yield, <u>Ostrinia nubilalis R, Diabrotica virgifera</u> R --Oyervides-Garcia &, r439 Full-sib selection in BSS for yield for yield or prolificacy --Pollak &, r448 Allozyme correlations in Nays Golden mass selected for yield or prolificacy --Pollak &, r491 Cold tolerance in diallel, gca > sca --Pozzi &, r497 Allozyme heterozygosity for prediction --Price &, r498 Selection for stalk strength, <u>Diplodia maydis R, Ostrinia nubilalis</u> R, <u>DIMBOA</u> --Rehn &, r508 <u>Corynehacterium nebraskense R/S, 9:</u> 7 ratio from A619/A632 ---Schuster &, r557 Full-sib selection in Partap for prolificacy --Singh &, r577 Selection for early flowering --Troyer, r632 Methotrexate R selection in tissue culture --Tuberosa &, r636

--Assembled unrestricted by Prof. Ligate

IV. MAIZE GENETICS COOPERATION STOCK CENTER

In the immediate future high priority will be given to the development of the most useful stocks in immediately usable condition. In part this will involve an effort to derive stocks in more vigorous backgrounds, particularly through the intercross of stocks of similar genetic marking followed by re-extraction of parental or new combinations. As an adjunct to this effort, it will be important to develop improved gene combinations incorporating both old and new marker genes. Greater emphasis will be placed on deriving and perpetuating alleles and chromosomal variants in homozygous condition or by testcrosses.

It is important that you be reminded that many of you have valuable genetic stocks that have not yet been submitted to the stock center. Usually, the most appropriate and convenient time to send in stocks occurs as soon as you are willing to share them or at such time as you cease active work with them. It is particularly important that seed stocks be submitted while pedigree information is newly verified and seed viability is at its maximum.

Several other guidelines for submission of seed stocks are appropriate. If feasible, stocks should be provided in homozygous condition if classification of traits in segregating progenies requires cytological or biochemical observations, or if other extended capabilities are necessary. For example, the most useful, and immediately usable, stocks of defined chromosome knob constitution would consist of inbred lines homozygous for knobs at designated locations. Similarly, stocks of isozyme alleles might best be provided in homozygous condition. A moment's reflection may suggest to you the most suitable genotype for perpetuation; it would usually be that genotype that you would prefer if you were requesting the stock. Any additional information or documentation you can provide would be welcome. If known, indicate which genes can be recommended for general linkage studies, and which traits have exhibited a disquieting range of penetrance or expressivity. Finally, if certain stocks are partially converted to inbred line background, that fact should be noted in the pedigree in order that the background might be preserved and the conversion continued.

We continue to welcome constructive suggestions for improving the stock center program. Over time, as the directions and emphasis of research activities are modified, we will need the help of each of you in ensuring that our activities and priorities remain responsive to your needs.

- E. B. Patterson, University of Illinois at Urbana-Champaign, Department of Agronomy, S-116 Turner Hall, 1102 S. Goodwin Ave., Urbana, Illinois 61801 Phone (217)333-9641
- Gilbert B. Fletcher, UIUC, Department of Agronomy, S-123 Turner Hall, 1102 S. Goodwin Ave., Urbana, Illinois 61801 Phone (217)333-9644; Lab (217)333-6631

Chromosome 1 101A sr zb4 P-WW 101b sr P-WR ** sr P-WW 101C 101D sr P-RR sr zb4 P-WR 101E 101F sr P-RR ts2 101K sr an 102A sr P-WR an gs bm2 sr P-WR an bm2 ** sr P-RW ad bm2 ** sr P-RR ar b--sr P-WR an gs bm2 102B 102C sr P-RR an bm2 sr P-RR gs bm2 sr P-WR bm2 103A 103B 103C vp5 zb4 ms17 P-WW 103D 103E zb4 ms17 P-WW rs2 sr P-RR bm2 ** 103F 103G sr P-RR bm2 ** zb4 ts2 P-WW br f bm2 zb4 ts2 P-WW bm2 zb4 ts2 P-WW br f zb4 ts2 P-WW br f zb4 P-WW ** zb4 P-WW br ** zb4 P-WW br f bm2 me17 104A 104B 104C 104E 105A 105C 105D 105E ms17 106A zb4 P-WW bm2 ts2 P-RR 106B 106C ts2 P-WW bm2 ts2 P-WW br bm2 ts2 P-WW br f bm2 106D 106E ts2 br f bz2 bm2 ACR P-CR ** P-RR ** P-RW ** 106G 107A 107B 107C P-CW P-MO P-VV 107D ** ** 107E ** 107F P-OR P-RR as br f an qs bm2 107G 108A P-RR br f an gs bm2 rd P-RR br f an gs bm2 rd P-RR br f an gs bm2 id P-RR br f an gs bm2 v8983 P-RR br f an gs bm2 v8943 P-RR br f an gs bm2 v8943 108B 108C 108D 108E 108F 1094 P-RR an ad bm2 P-RR an gs bm2 ** P-RR br f an ad gs bm2 P-RR ad bm2 ** 109B 109C 109D P-WR br f 109E P-WR bi P-WR an Kn bm2 P-WR an Kn P-WR an adl bm2 P-WR an bm2 P-WR ad bm2 109F 110A 110B 110C 110D 110E P-WR br Vg 110F P-WR br f gs bm2 P-WR br f bm2 P-WR an br2 bm2 P-WR br 110G 110H 110J 110K P-WR br f Kn Ts6 bm2 110L P-WR br an Kn bm2 110M 110N P-WR br2 bm2 P-WR Dr2 Dm2 P-WW rs2 P-WW rs2 br P-WW as br f bm2 P-WW br f ad bm2 P-WW br f ad bm2 P-WW br f an gs bm2 P-WW br Y a 111A 111B 111C 111D 112A 112B 112C 112D 112E P-WW br Vg as 112H P-WW br ** 113A as br2 113B rd br f 113C 113D br f bm2 v5588 br f Kn br f Kn Ts6 113E 114A 114B br f Kn bm2 114C br bm2 114D Vg Vg an bm2 Vg br2 bm2 V22 bz2-m: A A2 C Pr 115A 115B 115C 115D 1151 Vg id bm2 116A bz2-m: A A2 C R Pr bz2 ad bm2: A C R 116B 116C an bm2 an-bz2 6923 (Df) 116D 116E 117A an br br2 **

Catalogue of Stocks (continued) 117G br2 ts2 118A Kn Ts6 Kn bm2 118B 118C lw Kn Ts6 bm2 118D 118H rs2 Kn Ts6 119A Adh1-S Vp8 gs ** gs bm2 ** Ts6 119B 119C 119D 119E bm2 ** 119F 120A id 120B nec2 120C ms9 120D 121A ms12 ms14 121B mi 121C D8 121D Lls tiny TB-1La (1L.20) 121E 122A 122B TB-1Sb (15.05) 125A Les2 Chromosome 2 201A ws3 lg gl2 B ws3 lg gl2 B sk 201B ws3 lg gl2 B sk v4 ws3 lg gl2 B sk fl v4 201C 201D ws3 lg gl2 B ts ws3 lg gl2 L ws3 lg gl2 b ws3 lg gl2 b sk v4 201E 201F 202A ws3 1g g12 b gs2 v4 ws3 1g g12 f1 v4 202B 202C ws3 lg gl2 b sk fl v4 ws3 lg gl2 b v4 202D 202E ws3 lg g12 b v4 al 203A 203B al ws3 lg gl2 b sk 203C ws5 1g g12 b sk al 1g al 1g g12 b sk v4 al 1g g12 b sk v4 al 1g g12 b sk v4 al 1g g12 b ba2 al 1g g12 b sk 203D 203E 204A 204C 204P lg lg g12 205B 205C lg g12 lg g12 B gs2 lg g12 B gs2 v4 lg g12 B gs2 ch lg g12 B gs2 ch lg g12 B gs2 ck lg g12 B gs2 sk Ch lg g12 B gs1 lg g12 B gs1 lg g12 B gs2 sk v4 lg g12 B sk lg g12 B sk v4 lg g12 B v4 206A 206B 206C 206D 206E 206F 207A 208A 208B Ig g12 B sk v4 Ig g12 B sk v4 Ig g12 b sk v4 Ig g12 b gs2 ** Ig g12 b gs2 ch ** g12 ** Ig g12 b gs2 ch ** g12 b gs2 v4 Ig g12 b gs2 v4 Ig g12 b sk f1 Ig g12 b sk f1 Ig g12 b sk f1 Ig g12 b f1 Ig g12 b f1 Ig g12 b f1 v4 ** Ig g12 b f1 v4 ch ** Ig g12 b v4 Ig g12 b v4 Ch = 1 Ig g12 b sk f1 Ig g12 b sk f1 Ig g12 b f1 v4 ** Ig g12 b f1 v4 ch ** Ig g12 b v4 Ig 208C 208D 208E 208F 208G 208H 209A 209B 2090 209E 209F 209G 210A 211A 211B 212A 212B 212C 212D 212E Ig g12 b v* ch Ig g12 wt v* Ig g12 wt ** Ig g12 w3 Ig g12 b Ch Ig g12 b Ch ** Ig b gs2 v4 Ig ch Ch 213A 213B 213C 213D 213E 214A 214B 214C lg g12 Ch d5 B gll1 B ts gl14 214D 214E 215A g111 ** 215B 215C wt 215D mn 215E f1 fl alleles from PI fl v4 Ch fl Ht v4 215F 216A 216B 216C fl Ht v4 Ch Some of these stocks are available in a homozygous state.

(continued) 216D fl w3 216E f1 v4 w3 216F fl w3 Ch 216G fl v4 w3 Ch ts v4 ** v4 w3 Ht Ch 217A 217B 217C 217D v4 Ht Ch 217E w3 Ht Ch 218A w3 218C w3 Ch Ht (source A and B) 218D 218E ba2 R2: r A A2 C 219A 219B r2: r-g A A2 C 219C 219D Ch Ht Ch 219E w3 ba2 220A Les Les 2 2T T2/ ws3 lg gl2 (T=Tripsacum) gs2 ** TB-1Sb-2L 4464 TB-3La-2S 6270 Primary Trisomic 2 **4670 220B 221A 222A 222B 223A 224A w4670 224B v5537 224F w 062-3 224G yel 8630 224H white pollen (Coe) Chromosome 3 cr ** 3012 301A C1 301B cr d ** 301C cr d Lg3 301E cr ts4 na lg2 302A d=d-6016 (rosette) 302B d rt d (tall) 302E d rt Lg3 d Rf lg2 ** g2=v19=pg14 ** d ys3 d ys3 Rg d Lg3 d Pc 303A 303B 303F 3044 304B 305A d Rg d Rg ts4 1g2 d Rg ts4 305D 3061 d ky d pm ** 306D 307A 307C pm ** d ts4 lg2 a-m: A2 CR Dt d ts4 ** d lg2 a-m A2 C R Dt 308A 308B 308C d 1g2 a-m A2 C R Dt d a-m A2 C R Dt ** ra2 ** d ts4 a-m: A2 C R Dt ra2 rg ts4 1g2 ra2 rg 1g2 ra2 rg 1g2 ra2 pm 1g2 ra2 pm 1g2 ra2 cg 1g2 308D 308E 308G 309A 309B 309D 309E ra2 Lg3 ys3 ra2 ts4 ** ra2 lg2 ** 309F 310A 310C Cy cl 310D 311A cl : Clm2 cl: Clm3 311B 311C 311D cl-p: Clm4 rt ys3 ** 311E 311F ys3 Lg3 ys3 ts4 lg2 Lg3 311G 312C 312D 316A ts4 ** 316B ts4 na 317A ts4 na pm ts4 ba na 317B ts4 lg2 a-m A2 C R Dt ts4 na a-m et: A2 C R Dt ig ** 317C 317D 318A 318B ig ba 318C w7748=y10 lg2 A-b et: A2 C R Dt lg2 a-m sh2 et: A2 C R Dt lg2 a-m et: A2 C R Dt lg2 a-m et: A2 C R dt ** lg2 a-m et: A2 C R Dt ** 319A 319B 319C 319D 1g2 a-st sh2 et: A2 C R Dt 1g2 a-st et: A2 C R Dt 1g2 ** na 1g2 319E 319F 320A 320C A sh2: A2 C R B Pl dt A sh2: A2 C R b pl A-d31: A2 C R 320D 320F 321A A-d31 sh2: A2 C R B P1 dt A-d31 sh2: A2 C R Dt 322A 322B 322E a-m: A2 C R B Pl dt a-m: A2 C R b pl dt 322F

117B

117C

117D

117E Kn

br2 bm2

tb-8963

br2 an bm2

(continued) (continued) 323A a-m: A2 C R Dt ** 323B a-m: A2 C R B Pl Dt ** 323C a-m sh2: A2 C R B Pl dt 323D a-m sh2: A2 C R B Pl Dt 323E a-m et: A2 C R Dt ** 324A a-st: A2 C R Dt ** 324A a-st sh2 et: A2 C R Dt ** 324B a-st et: A2 C R Dt ** 324B a-st et: A2 C R Dt ** 324F a-st et: A2 C R Dt ** a-p shi et: A2 C R B P1 Dt a-st: A2 C R dt ** a-p et: A2 C R dt ** a-p et: A2 C R dt ** a-p et: A2 C R B P1 Dt ** a-xi 324F 324G 325A 325B 325C a-x3 a Ga7: A2 C R a3 ** sh2 325D 325E 325G 326A 326B vp Rp on 3 ** te ** yel 5787 326C 326D 326E 327A TB-3La (31.10) TB-3Sb (35.50) 327B 327C TB-3LC 327D TB-3Ld Primary Trisomic 3 h ** 328A 330A h n ** TB-1La-3L5267 TB-1La-3L4759-3 331A 331B 331C TB-1La-3L5242 TB-3Lf 331E TB-3Lg 331F 331G TB-3Lb 331H TB-3Li 331I TB-3Lj 331J TB-3Lk 331K TB-3L1 331L TB-3Lm Chromosome 4 401A Rp4 401E Ga ** Ga ** Ga su ** Ga-S ** 4010 401D 401E Ga-S: y Ga-S: A A2 C F st ** st Ts5 401F 4022 402B st f12 ** Ts5 402C 402D Ts5 f12 403A Ts5 su Ts5 la su gl3 Ts5 la su gl3 ol Ts5 su zb6 Ts5 su zb6 o Ts5 su gl3 o Ts5 su gl3 o Ts5 su gl3 o 403B 403C 403D 404A 404B 404C 405A Ts5 Tu 405B la la su gl3 405D la su gl3 o la su bt2 gl3 406A 406B 406C fl2 ** 406D fl2 su ** 407B fl2 su bm3 fl2 su Tu gl4 su ** 407C 407D su-am ** 407E 407F su-am du su bt gl4 ** su bm3 ** su zb6 ** 408A 408B su zb6 ** su zb6 Tu ** su zb6 gl3 dp * su zb6 gl3 ** su gl4 j2 su gl4 o ** gl4 ** gl4 ** su gl4 o Tu su gl4 o Tu su j2 ** su gl3 ** 408C 409A 410A ... 410D 411A 411B 412E 414B 414C 412A 412B 412C su g13 o ** su o ** 412D 413A su g14 ** bt2 ** 413B 408E bm3 ** 415A j2 j2 j2 c2: A A2 C R j2 c2: A A2 C R j2 c2: A A2 C R Tu 415B 415C 416A 416B Tu-1 1st 416C Tu-1 2nd 416D Tu-d 416E Tu-md

416F Tu gl3 417A j2 gl3

** Some of these stocks are avialable in a homozygous state.

(continued) 417B v8 ** 417C gl3 * 417D g13 o 418A gl3 dp C2: A A2 C R ** C2: A A2 C R ** 418B 418C C2-Idf (Active-1) : A A2 C R ** dp ** o ** 418D 418E o ** v17 ** 418F 418G 419A v23 su gl3 ra3 a1 Dt6 gl3 Dt4 su: a-m A2 C R 419B 419F 420A TB-41-95 6504 420B Dt4: a-m A2 C R TB-4L-9S 6222 420H 4201 TB-4Sa (45.20) TB-1La-4L4692 421A 421B TB-7Lb-4L4698 421C 422A Primary Trisomic 4 423A TB-4Lb 423B TB-4LC TB-4Ld 423C 423D TB-4Le 423E TB-4Lf Chromosome 5 501% am a2: A &2 C F 501F lu ** 501C lu sh4 5010 ms13 501E gl17 ms13 gl17 gl17 A2 pr: A C F gl17 A2 bt: A C R gl17 a2 bt: A C R gl17 v3 lu a2 bm pr A C R gl17 a2 bt v2: A C R A2 vp7 pr: A C R A2 bm bt pr ys: A C R A2 bm pr ys: A C R A2 bm pr ys: A C R A2 bt pr ys in: A C R A2 bt pr ys in: A C R A2 bt pr ys in: A C R A2 v3 pr: A C R ** A2 pr v2: A C R ** A2 pr v2: A C R ** A2 pr v12: A C R ** A2 bm bt pr: A C R ** A2 bm pr v2: A C R ** A2 bm pr eg: A C R ** A2 bt v3 pr: A C R ** A2 bt v3 pr: A C R A2 bt v2: A C R ** 501F 501H 501K 501L 502A 502B 502C 502D 503A 503D 504A 505A 506A 506B 506C 506D 505B 506E 506F 506L 507A 508A 508B 509C 510A 510B 511A 511B 511C 512A 512B a2 pr: A C R ** a2 pr: A C R B Pl 513A 513B a2 pr v2: A C R vp2 513C 515A vp7 bm ** 515C 515D bm yg Ch bt ** 516A 516B 516C bt ms5 bm pr yg: A C R v3 ** ae ** 516G 517A 517B 516D td ae 518A sh4 sn4 g18 ** 518B 518C na2 518D 1w2 sh4 v2 ** ys ** eg ** v2 ** 518F 519A 519B 519C 519D ** PV pr yg: A C R ** vl2 ** br3 ** 519E 520B 520C nec3 521A TB-5La 522A TB-5Lb 522B 522C TB-5Sc 523A Primary Trisomic 5

Chromosome 6 601A rad po y rgd po Y rgd y rgd Y 601b 601C 601D 601E DO = ms6 po y pl po y pl po y wi 601F 601G 602A 602B po y pl 602C y = pb = w - n602D 602E y rhm po y wi pl po y wi pb4 pl po y wi pb4 pl y 110 602F 602G 603A 603B y 111 603C y 112 y w15 603D y pb4 y pb4 pl y pb4 pl y pb4 Pl 603E 604A 604B 604F y ms-si 604G y wi pb4 Pl 604H y ms y wi Pl 605A 605C y wi P1 y pgll: Wx pgl2 y pgll wi : wx pgl2 Y wi P1 Y wi p1 Y wi p1 Y pgl1: Wx pgl2 605D 605E 605F 606A y pgll : wx pgl2 ** Y pgll : wx pgl2 606B 606C Y pgl1 : wx pgl2 y pgl1 su2 : wx pgl2 y pl y Pl y Pl Bh : c sh wx A A2 R y su2 ** y ll0 Y ll2 Y pb4 ** Y wi pl ** Y su2 ** y su2 ** 606D 606E 606F 607A 607B 607C 608A 608B 609A 609B 609C 609D wi 610A Pl Dt2 : a-m A2 C R 610B pl sm : P-RR ** Pl sm : P-RR ** 610C 611A Pl sm py : P-RR Pl sm Pt py : P-RR 611B 611C 611D Pt 611E w 611F Pl sm Pt:P-RR 612A w14 ms6 612B 612C 1*-4923 oro 2NOR : a2 bm pr v2 612D 613A 614A TB-6Lb 614B TB-6Sa 614C TB-6Lc 615A Primary Trisomic 6 Chromosome 7 7017. Hs o2 v5 ra gl 7011 1n-E 7010 In-D 701C In-D gl 701D of ** 702A o2 v5 ** 702A 02 V5 ** 702B 02 V5 ra gl 702C 02 V5 ra gl sl 702D 02 V5 ra gl sl 702D 02 V5 ra gl Tp 702E 02 V5 ra gl ij 703A 02 V5 gl ** 02 v5 g1 ** 02 v5 ra g1 Pn 703B o2 v5 gl ms7 o2 ra gl 7030 703D o2 ra gl ij 704A 704B o2 ra gl sl 704C o2 v5 g1 s1 o2 gl o2 gl sl ** o2 ij o2 bd 705A 705B 705C 705D 02 bd 02 sl 02 ij bd y8 v5 gl in : A2 pr A C R v5 ** 706A 706B 707A 707B 707C 707D v5 707E vp9 707F y8 g1 ** 708A ra ra gl ij bd gl ** 708B 709A gl ms7 gl Tp 712B 710A gl Tp gl mn2 710B

(continued) 710E gl o5 = pg Tp ij ** 711A 711B 711C gl sl va 712A ms7 713A 713B Bn bd 713C ms7 ra gl ij 714A Pn 714B o5 ** 714B o5 mn2 gl 714C 714D va 715A Dt3: a-m A2 C R 715B o2 ra gl Dt3: a-m A C R 715C gl Dt3: a-m A C R 716A v*-8647 716A V*-8647 716B yel*-7748 717A TB-7Lb (7L.30) 718A Primary Trisomic 7 719A TB-7Sa Chromosome 8 801% glit ** 801E vić ** 801D v16 ms8 j v16 ms8 j nec v16 j g118 ** 801E 801F 801F v16 g118 801G v16 g118 802A v16 ms8 j g118 802B v16 ms8 j ye10245 803A ms8 803B nec ms8 j gl18 ms8 gl18 v21 ** 803C 803D 804A v21 ** 805A f13 ** nec v21 805B 805C gl18 v21 fl3 j ms8 805D TB-8La 806A 806B TB-8Lb 807A Primary Trisomic 8 809A TB-8LC Chromosome 9 901E yg2 C sh b2: A A2 F 901C yg2 C sh b2 wx: A A2 R ** 901D yg2 C-1 sh b2 wx: A A2 R 901E yg2 C b2 wx: A A2 F **

 901D
 yg2 C-1 sh bz wx: A A2 R

 901E
 yg2 C sh bx wx: A A2 F **

 902A
 yg2 c sh bx wx: A A2 R **

 902B
 yg2 c sh wx: A A2 R **

 902D
 yg2 c sh wx: A A2 R **

 902D
 yg2 c sh wx: Gl15: A A2 R **

 902D
 yg2 c sh wx: Gl15: A A2 R **

 902D
 yg2 c sh wx: Gl15: A A2 R

 902E
 yg2 c sh wx: Gl15: A A2 R

 903A
 C sh bz: A A2 R **

 903B
 C sh bz wx: A A2 R **

 903B
 C sh bz wx: A A2 R **

 904A
 C sh bz wx gl15 bm4: A A2 R

 904B
 C sh bz wx gl15 bm4: A A2 R

 904C
 C sh bz wx bm4: A A2 R **

 904D
 C wx at: A A2 R **

 904E
 C sh bz gl15 bm4: A A2 R **

 904F
 C sh bz gl15 bm4: A A2 R **

 905B
 C sh wx K-L9: A A2 R **

 905B
 C sh ms2: A A2 R

 905C
 C bz Wx: A A2 R

 905C
 C bz Wx: A A2 R

 905D
 C sh wx K-L9: A A2 R **

 905D
 C sh wx K-L9: A A2 R

 905A C sh wx K-L9: A A2 R ** 905B C sh ms2: A A2 R ** 905C C bz Wx: A A2 R ** 905C C sh wx K-L9: A A2 R K-10 905E C sh wx v: A A2 R Pr y ** 906A C Ds wx: A A2 R Pr y ** 906B C Ds Wx: A A2 R Pr y ** 906C C-I DS Wx: A A2 R Pr Y ** 907C C wx: A A2 R B Pl ** 907B C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907C C wx: A A2 R B Pl ** 907E C-I wx: A A2 R Y B Pl ** 908E C wx ar da: A A2 R ** 908B C wx v: A A2 R Pl ** 908B C wx y: A A2 R Pl ** 908B C wx ar da: A A2 R ** 908B C wx ar da: A A2 R ** 908B C wx ar A2 R Pr ** 908B C wx ar: A R 908B C wx ar: A R 908G C wx ar: A R 908G C wx ar: A R 908G C wx A2 R ** 909D c bz wx: A A2 R ** 909D c sh wx w: A A2 R ** 909D c sh wx w: A A2 R ** 909D c sh wx v: A A2 R ** 909E c sh wx v: A A2 R ** 909F c sh wx q115: A A2 R ** 909F c sh wx gl15: A A2 R ** 909G c sh wx ms2: A A2 R 910A c sh wx gl15 bk2: A A2 R 910B c sh wx gl15 Bf: A A2 R ** 910C c sh wx bk2: A A2 R **

(continued) 910D c: A A2 R ** 910E c sh wx gl 15 16 ** 910F c sh wx gl15 bm4: A A2 R 911A c wx: A A2 R y ** 911B c wx v: A A2 R y ** 911C c wx gl15: A A2 R ** 911D c wx Bf: A A2 R ** 912A sh ** sh wx v ** 912B 912E 102 sh wx ** 913A sh wx v gl15: A A2 C R ** wx d3 ** 913B 914A wx d3 g115 wx* ** 914D 915A wx-a ** 915B 915C w11 wx pgl2 bm4: y pgl1 wx v ** wx v gl15 bk2 Bf bm4 wx bk2 ** 915D 916A 916B wx bk2 bm4 ** wx Bf ** 916C 916D 917A 917C v ** ms2 917D gl15 ** d3 gl15 Bf ** 917E 917F 918A gl15 bm4 ** Wc bk2 918B 918C Wc ** Wx bk2 bm4 ** 918D WX Bf 918E 918F 919A bm4 bm4 Bf ** 919B 16 17 919C 919D 919E wx 17 919F 16 wx 919F 16 11 919H 17 11 ye1*-034-16 920A w*-4889 920B 920C w*-8889 920E w*-8950 w*-9000 920F 920G Tp9 N9 N3 Df3 921A TB-9La (9L.40) 921B TB-9Sb (9S.40) 921C TB-9LC 921D TB-95d 922A Primary Trisomic 9 Chromosome 10 X01k oy X01A oy X01E oy R: A A2 C ** X01C oy bf2 ** X01F oy bf2 R: A A2 C ** X01F oy bf2 du X02A oy ms11 X02D oy du R: A A2 C ** X02E oy du R: A A2 C ** X021 oy bf2 ms10 sr3 Og ** X03A X03B Og B P1 ** Og: A C R ** X03C X03D X04A Og du R: A C R ** X04B msll X04C ms11 bf2 bf2 ** X04D bf2 X04E C-I Og B Pl X05A bf2 zn ** X05B bf2 li g r: A A2 C X05B bf2 li g r: A A2 C X05C bf2 g R sr2: A A2 C ** X05E bf2 sr2 X05F bf2 ms10 X06A bf2 r sr: A A2 C ** X06C nl g R: A A2 C ** X07A nl g r: A A2 C ** X07B nl g R sr2: A A2 C X07C Y9 x07C ¥9 X07E nl g r sr2:A C X07D nl X07D n1 X09A li zn g r: A A2 C X09B li g R: A A2 C ** X09F ms10 X09G li g r :A C ** X09H li g r v18:A C X10A du ** X10C du c7 ** dugr: ACR ** X10D X10F zn du v18 X10G X11A zn g

(continued) (continued) X11B zn g R sr2: A A2 C X11C zn g r: A A2 C ** X11D Tp2 g r: A A2 C ** X11F g R sr2: A A2 C ** X11F g r: A A2 C ** X12F g r: A A2 C ** X12D g R-g sr2 v18: A A2 C X12E g R:A A2 C X12E g r: A A2 C ** g r-ch K10:A A2 C K10 10B B10 X12F X12G g R-g K10: A A2 C g R-g sr2: A A2 C ** g r-r sr2: A A2 C ** X13A X13B X13D g r-r sr2: A A2 C ** g r-r:A C wx g r-g:A C Ej r-r: A A2 C ** g R v18:A C Ej r-r sr2: A A2 C ** R-g: A A2 C ** r-g sr2: A A2 C X13F X13G X14A X14B X15A X15C X16A X16B X16C r K10: A A2 C R-ch :A A2 C B pl ** r-g: A A2 C ** r-ch Pl: A a2 C ** X17A X15D r-r: A A2 C ** R-mb; A A2 C ** R-nj: A A2 C ** R-r; A A2 C ** X17B X17C X17D R-r: A A2 C ** R-nj purple embryo Chase X17E X17F R-n; purple embryo Ch R-lsk: A A2 C ** R-sk-nc 2: A A2 C ** R-st: A A2 C ** R-st: A A2 C ** R-st Mst ** R-st Mst o7 P-scm² b2 2 A A2 C C² X18A X18B X18C X18D X18E X18F R-scm2: bz2 A A2 C C2 X18G R-scm2: a-st A2 C C2 ** R-scm2: c2 A A2 C ** X25A X25B R-scm122: pr A A2 C C2 ** R-scm2: c A A2 C C2 ** R-scm2: c A A2 C2 ** X25C X25D X25E X19a X19B LC ** w2 w2 1 07 ** X19C X19D 07: 02 ** 1 ** X20A X20B X20C v18 ** 1 yel*-5344 yel*-8721 X20E X20F yel*-8454 yel*-8793 TB-10La (10L.35) X20G X20H X21A TB-10Sc X22A X21B TB-10L19 X23A Primary Trisomic 10

** Some of these stocks are available in a homozygous state.

Unplaced Genes U235A dv U235B U335A U435A U635A dy el 14 Rs U533A U935A v13 ws ws2 zb UX35A UX35B zb2 U934B zn2 U734A nec U933A 09 U933B 010 nec*-8376 U933C 011 U933D 013

Multiple Gene Stocks

M141A	A A2 C C2 R-g Pr B Pl
M141B	A A2 C C2 R-g Pr B pl
M141C	A A2 C C2 R-g b Pl
M241A	A A2 C C2 r-g Pr B Pl
MX17A	A A2 C C2 r-g Pr b pl
M241B	A A2 C C2 r-g Pr B pl
M341A	A A2 C C2 R-g Pr B pl
M241C	A A2 C C2 R-r Pr B Pl
M341B	A A2 C C2 R-r Pr B pl
M341C	A A2 C C2 R-r Pr b Pl
M441A	A A2 C C2 R-r Pr B Pl wx
M441B	A A2 C C2 R-r Pr B pl wx
M441C	A A2 C C2 R Pr
M641A	A A2 C C2 R Pr wx
MX41A	A A2 C C2 R pr y wx gl
M941A	A A2 C C2 R Pr y wx
M741A	A A2 C C2 r Pr Y wx
M341D	A A2 C C2 R-r Pr B Pl
M441D	A A2 C C2 r-r Pr B Pl
M441E	A A2 c C2 r-r Pr B Pl
MX41B	su pr y gl wx : A A2 C C2 R
M841A	A su pr : A2 C C2 R
MX41C	bz2 a c2 a2 pr Y/y c bz wx r
M841B	a su A2 C C2 R
MX40A	bm2 lg a su pr y gl j wx g
M841C	colored scutellum
MX41D	a su pr y ql wx A A2 C C2 R
MX40B	ts2 : sk
MX40C	lg gl2 wt : a-m A2 C C2 R Dt
M741B	A A2 C C2 R-nj : purple embryo
	S. Chase
M741C	Stock 6 : Hi-haploid R-r B Pl

Popcorns

P142A P142B Amber Pearl Argentine Black Beauty P142C P242A Hulless P242B P242C P342A Ladyfinger Ohio Yellow Red P342B P342C Strawberry Supergold South American P342D P442A Tom Thumb White Rice P442B

Exotics and Varieties

E542A	Black Mexican Sweet Corn
	(with B-chromosomes)
E542B	Black Mexican Sweet Corn
	(without B-chromosomes)
E642A	Knobless Tama Flint
E442A	Gaspe Flint
E642B	Gourdseed
E742A	Maiz Chapalote
E742B	Papago Flour Corn
E742C	Parker's Flint
E842A	Tama Flint
E842B	Zapalote Chico

Tetraploid Stocks

N103A P-RR N103B P-VV N103C a A2 C R Dt N104A su N104B pr : A A2 C R N105A y N106A g1 N106B Y sh wx N106C wx N106C WX N107A G A A2 C R N107A A A2 C R Pr B Pl

Cytop	lasmic	traits
-------	--------	--------

C738A C738B NCS2 NCS3

Cytoplasmic steriles and Restorers

COLORED IN	1.354576 1.1555		
C836A	WF9-(T)	rf	rf2
C836B	WF9	rf	rf2
C736A	R213	Rf	rf2
C736B	Ky21	Rf	Rf2

Waxy Reciprocal Translocations

Reciprocal Translocations wx 1-9c (1S.48: 9L.22) * Sx wx 1-94995 (1L.19: 9S.20) * Sx wx 2-9b (2S.18: 9L.21) * Sx wx 2-9b (2S.18: 9L.22) * Sx wx 3-9c (3L.09: 9L.12) * Sx wx 4-95657 (4L.33: 9S.25) * Sx wx 4-9g (4S.27: 9L.27) * Sx wx 5-9a (5L.69: 9S.17) * Sx wx 5-9a (6S.79: 9L.40) * Sx wx 6-9a (6S.79: 9L.40) * Sx wx 7-94(7L.63: 9S.07) * Sx wx 7-94(7L.63: 9S.07) * Sx wx 8-9d (8L.09: 9L.16) * Sx wx 8-9d (8L.09: 9L.16) * Sx wx 8-9d (8L.09: 9L.16) * Sx wx 8-9d (8L.35: 9L.31) * Sx wx 9-10b (9S.13: 10S.40) * Sx WX01A WX02A WX03A WX05A WX08A WX13A WX12A WX11A WX17A WX14A WX19A WX20A WX23A WX22A WX24A WX25A WX27A

Non-waxy Reciprocal Translocations

WX30A	WX	1-9c (1S.48: 9L.24) * Sx
WX30B	Wx	1-94995 (1L.19: 95.20) * Sx
WX30C	Wx	1-98389 (1L.74: 9L.13) * Sx
WX31A	Wx	2-9c (2L.49: 95.33) W23 only
WX31B	Wx	2-9b (25.18: 9L.22) * Sx
WX32A	Wx	3-98447 (35.44: 9L.14) *
WX32B	Wx	3-98562 (3L.65: 9L.22) * Sx
WX33A	Wx	4-9e (45.53: 9L.26) * Sx
WX33B	Wx	4-95657 (4L.33: 95.25) * Sx
WX34A	Wx	5-9c (5S.07: 9L.10) * Sx
WX34B	Wx	5-94817 (5L.69: 95.17) M14 only
WX35A	Wx	5-98386 (5L.87: 95.13) * Sx
WX36A	Wx	6-94778 (65.80: 9L.30) * 5x
WX37A	Wx	6-98768 (6L.89: 95.61) * Sx
WX37B	Wx	7-94363 (7 cent: 9 cent) *
WX38A	Wx	7-9a (7L.63: 95.07) * 5x
WX38B	Wx	8-9d (8L.09: 9L.16) * Sx
WX38C	Wx	8-96673 (8L.35: 9S.31) * Sx
WX39A	Wx	9-108630 (95.28: 10L.27) M14 only
WX39B	Wx	9-10b (95.13: 105.40) * Sx

* = Homozygotes available in both M14 & W23 backgrounds

Sx = Single cross of homozygotes between
M14 & W23 versions available

Inversions

1143A	Inv.1a (15.30-L.50)
I143B	Inv.1c (1S.35-L.01)
I143C	Inv.1d (1L.55-L.92)
I143D	Inv.1L-5131-10 (1L.46-L.82)
1444A	Inv.2a (2S.70-L.80)
1243A	Inv.2S-L8865 (2S.06-L.05)
1243B	Inv.2L-5392-4 (2L.13-L.51)
1343A	Inv.3a (3L.38-L.95)
I343B	Inv.3L (3L.19-L.72)
1343C	Inv.3L-3716 (3L.09-L.81)
1443A	Inv.4b (4L.40-L.96)
1443B	Inv.4c (4S.86-L.62)
1543A	Inv.4e (4L.16-L.81)
1743A	Inv.5-8623 (5S.67-L.69)
1743B	Inv.6-8452 (6S.77-L.33)
1843A	Inv.6-8604 (6S.85-L.32)
1743C	Inv.6-3712 (6S.76-L.63)
1943A	Inv.7L-5803 (7L.17-L.61)
1943B	Inv.7-8540 (7L.12-L.92)
1943C	Inv.7-3717 (7S.32-L.30)
IX43A	Inv.8a (85.38-5.15)
I344A	Inv.9a (95.70-L.90)
IX43B	Inv.9b (95.05-L.87)
TX43C	Inv.9c (95.10-T. 67)

V MAPPING 1987

CHROMOSOME 11.

I continue to work on mapping new genes that have been localized to LL, and on mapping known morphological markers to isozyme loci, cytogenetic breakpoints and RFLP clones.

breakpoints and RFLP clones. EMS-induced mutants provided by M. G. Neuffer: <u>v1*-266A</u> has a lethal albino phenotype and is loosely linked to <u>bz2</u>. Data from an F2 progeny in repulsion: + + + bz2 wl*+ wl* bz2 T 247 127 131 11 516 x² =36.1, p <.000; r=.26±.04 No linkage was found, however, with either <u>wx</u> T1-9(4995) (r=.46±.05, 276 F2 progeny) or <u>wx</u> T1-9(8389) (r=.49±.05, 199 F2 progeny). <u>dek22 (cp*-1113A</u>) has a lethal collapsed-kernel phenotype and is apparently unlinked to <u>bz2</u> and to <u>wx</u> T1-9(8389). No distortions of an expected 3:1 ratio were found in segregating F2 progeny. ratio were found in segregating F2 progeny.

white*-495A and white*-571C are albino lethals and have been shown to be allelic by a complementation test. F2 mapping data will be available this

spring. ad*-582 is not allelic to the standard <u>adl</u> locus on IL. Testcross and F2 mapping data will be taken this summer. <u>zb*-101</u> has a zebra-striped non-lethal phenotype; mapping data will be available after next summer.

<u>zb=101</u> has a zeora striped non-iterat memory, amprove and the second striped with the two are linked.
<u>br2:</u> Scoring of 192 F2 progeny failed to uncover a crossover with hm. It is likely that the two are linked.
<u>rd1:</u> Freeling has reported close linkage to <u>Adh1</u> (MNL 60:146, 1986). A testcross of <u>bz2</u> <u>rd1 gs1</u> in coupling will be scored this summer.

<u>rdl:</u> Freeling has reported close linkage to <u>Adhl</u> (MNL 60:146, 1986). A testcross of <u>bz2</u> <u>rdl</u> <u>gsl</u> in coupling will be scored this summer. <u>Isozyme-morphological marker mappingt</u> <u>gsl bm2</u> vs. <u>Phil Acp4</u>: Data from 200 testcross progeny give the following approximate distances (see MNL 61:86): <u>Centromere - gsl</u> (14.0) <u>Phil</u> (10.5) <u>bm2</u> (15.5) <u>Acp4</u> This makes <u>Acp4</u> the most distal marker on IL mapped to <u>date</u>. It also suggests that <u>Dia2</u> may be slightly distal to <u>bm2</u>. A testcross between <u>Dia2</u> and <u>Ts6 bm2</u> is being set up. Testcrosses will be scored next summer for <u>brl bz2</u> vs. <u>Ampl Mdh4 Pgml</u> and <u>bz2 gsl bm2</u> vs. <u>Adhl Phil Gdhl Acp4</u>. <u>Maxy translocation stocks:</u> <u>Crossing-over, wx-T</u>, from MNL 39:106, 1965, for Tl-9(4995)(1L.19) is 2.6% (14/542 plants); for Tl-9(8389)(1L.74), 3.3%. My data from testcross, for Tl-9(035-10)(1L.89), show 0.7% (1/144 plants). Mapping vs. restriction frament length polymorphisms (RFLP's):

Mapping vs. restriction fragment length polymorphisms (RFLP's): Total nuclear DNA was extracted from immature ears of the 200 plants scored in the <u>gsl bm2</u> vs. <u>Phil Acp</u>4 testcross (MNL 61:86). Southern blots of the DNA restricted with <u>HindIII</u> and <u>EcoRI</u> will be probed with a series of 1L markers kindly provided by T. Helentjaris of NPI and T. Murphy of Northrup King. This laboratory will also be creating a set of publicly available RFLP markers. This is in response to a request to the USDA, ARS by the mapping subcommittee of the Maize Genetics Cooperation.

Segmental trisomics: A set of 32 segmental trisomics involving 1L is being prepared according to the method described by Birchler (Genetics 94:687, 1980). These will permit mapping of isozyme and RFLP loci to chromosome segments.

Inversions:

Crosses have been made to map the following inversions in relation to 1L markers: Invla (18.30, 1L.50); Invlc (18.35, 1L.01); Invld (1L.55, 1L.92); InvIL-5131-10 (1L.46, 1L.82). I would appreciate any information about these inversions.

Production of genetic stocks: The following stocks have been developed and are available upon request; some are still in limited quantities, however:

D8 gs1 Ts6 bm2 ms14 br2 bz2 rd1 gs1 In response to inquiries about parent lines being used by arm coordinators for mapping: I am using A632 and M017 as parent lines for crosses and backcrossing. A632 has been a very good line to work with in Raleigh; Mol7 is more difficult; W23 is also good here; M14 is not; B73 is susceptible to every disease known to mankind and rather late for my purposes; Oh43 has trouble germinating.

[Mpl], Miniplant, dominant, possibly allelic to DB, approx. 4 units distal to 1w1, is described by Harberd et al. in this issue; Virginia Walbot reports that probes specific to the <u>bz2</u> gene do not cross-hybridize to DNA preps from the <u>an1-bz2-6923</u> stock available from the Stock Center (personal communication). This supports the hypothesis that <u>an1-bz2-6923</u> is a deletion mutant induced by radiation (MNL 30:100, 1956, 31:140, 1957)]. Paul Sisco

CHROMOSOME 3S

<u>Cgl</u> and a mutation resembling <u>Cgl</u> are located on 3S. Earlier reports suggesting that <u>Cgl</u> was not on 3S were in error because stocks were contaminated with <u>Tpl</u>.

CHROMOSOME 55

Eighty F2 families from <u>a2-m5/a2</u>, <u>wx1-m8/wx1(?)</u>, segregating <u>Spm</u>, were screened for new variants. New phenotypes appeared in eighteen families as follows: virescent 3, adherent 3, dwarf 2, crinkly leaf 3, pale green leaf 4, asymmetric leaf blade 2, narrow leaves 2, albescent 1, leaf lesions 1. The F1 had no lesions of this sort (see last year's report). There is evidence that the <u>En</u> at <u>a1</u> transposes preferentially to loci 6-20 map units from <u>a1</u> (P. A. Peterson, Theor. Appl. Genet. 40:367, 1970). Presumably some of these new loci will be near <u>a2</u>. They will be crossed to appropriate translocations and linkage testers in the summer of 1987.

New mapped locus: anll (E. Coe, this News Letter) is about 10 units distal to $\underline{a2}$. I have been using Mol7 for mapping of <u>hcf</u> factors and will do the same for these new loci.

CHROMOSOME 8

In this issue we report that de*-1386A is distal to jl.

CHROMOSOME 91.

In this News Letter: Coe reports <u>bk2</u> (5) <u>v30</u> (19) <u>Wcl</u> (16) <u>Bf1</u>. Behrendsen et al. report <u>sh1</u> (24) <u>wxl</u> (11) <u>NPI121-Css</u> (sucrose synthase-2), and Wright et al. report <u>NPI332-Pep</u> (PEP carboxylase) is also on 9L (see RFLP working maps). Neuffer and Beckett report <u>w1u4</u> (was <u>w1*-41A</u>) on 9L, and Neuffer et al. report <u>dominants Zb8</u> (was <u>Atcl</u>) and <u>Les8</u> (was <u>Les*-2005</u>) on chromosome 9 (near <u>wxl</u> per Bird and Neuffer, MNL 59:42); <u>G6</u> (was <u>C*-1585</u>) is 18 units from <u>wxl</u> and presumably on 9S Inasmuch as TB-9Sb hyperploids (+/+<u>C6</u>) are green. Allelism tests among established (named) and new factors have been set up, and crosses for mapping are advancing to analysis this year. I have been using W23 as a standard for recombination analysis whenever possible; otherwise, marker stocks of antique parentage or of F1 hybrids,

W23xK55 background. Ed Coe

CHROMOSOME 105

No new information has been received, but Larry Beach from Pioneer Hi-Bred is close to having some major quantities of linkage information that should help to place accurately several of the genes on 105. We anticipate much of this to be completed this summer. Once we have this information we will compile all the information available for 105.

We will complete all the information available for ios. We are moving 105 mutants into B73. Some mutants have A632 in their background and that will be our second choice. Some of the linkage information will be derived from lines that originated from the Stock Center, inbred line/purity unknown.

Marc C. Albertsen

Scott Poethig

Mary Polacco

M. G. Neuffer

MAIZE GENE LIST AND WORKING MAP

An updated version of the gene list that was published in Genetic Maps, Volume III, S.J. O'Brien. ed., National Cancer Institute NIH is presented on the following pages. A total of 635 entries are in the list, with 575 separate unit factors identified. Of these 575, 464 have at least been located to chromosome, leaving III unplaced. A list of these unplaced factors is below. If you are working on any of these and have information included a list of 265 factors which are not listed in the stocklist of the Coop (isozymes were not included in this list). I have supplied this list to Earl Patterson for his correction, as I am sure a number are available from the Coop and just not listed. If you have recently named a gene and not sent seed to the Coop, here is your reminder !!

Immediately following the gene list is the newly revised and updated working linkage map. The same format as in previous years was followed and I refer you to MNL 59:110 for an explanation of how the map is constructed. There are two additions to the map this year that need some explanation. The physical map of each chromosome is drawn immediately to the left of the core map. The length of each arm is in proportion to the ratio of the length of that arm to the length of chromosome 1 (lengths taken from the table in Maize for Biological Research, p.52). The length of chromosome 1 was assigned the same length as the genetic map. The centromeric region of each chromosome is aligned in both maps and the breakpoints for the B-A translocations identified where known. It is anticipated that additional cytological features will be added to the physical map as well as additional correlations with the genetic map.

Also included this year is the restriction fragment polymorphism map for each chromosome. These maps were kindly provided by Tim Helentjaris and co-workers at Native Plants, Inc. and used following only minor revisions. No attempt to correlate the molecular map with the other maps has been made, pending map revisions in the near future. All locus numbers to the right of the vertical line are NPI loci (and would be refered to as NPI#, see p. 49). Gene symbols within brackets are isozyme or morphological loci mapped relative to the RFP loci. The numbers immediately to the left of the vertical line are map distances, in centimorgans, between the tick marks. The UMC#'s to the left of these are additional loci dentified in my lab. It is anticipated that within the next few months a much better RFP map will be available and lead to a better correlation of the various maps.

All genes from the linkage map are referenced in the symbol index at the end of the newsletter in order to provide a possible means for locating a particular gene in the linkage map. I appreciate any and all comments and corrections regarding the map.

Dave Hoisington

LIST OF THOSE FACTORS NOT LOCATED TO CHROMOSOME

Aco2	Amy1	Cel	dvl	E10	Lcsl	meil	Mv1	oro2	pil	Px8	Sodl	Tpil	ws2
Aco3	aphl	cf12	dyl	g15	Letl	mgl	09	Oronl	p12	Px9	Sod3	Tp12	y11
Aco4	bs1	Cg2	E2	g19	lct2	ms20	010	paml	Px1	rgol	Sod4	tpml	y12
Acp2	btnl	clhl	E5-I	g120	Lfyl	Ms21	o11	pam2	Px2	Rel	Supl	trl	zbl
Adrl	bul	ctol	E5-11	Ht2	loc1	ms22	012	pd1	Px4	sel	syl	ubl	zb2
afd1	bv2	dbl	E6	Ht3	ltyl	m923	013	Pdf1	Px5	sen4	Tal	Ufol	zn2
agtl	Ca t3	deyl	E7	isl	1ty2	ms24	ora2	pel	Px6	sftl	Thel	v13	zpgl
Amp4	Cdhl	dsy2	E9	14	Mc1	ms28	ora3	pg13	Px7	Sgl	t11	wsl	

LIST OF THOSE FACTORS NOT IN THE COOP STOCKLIST

afdl	cf12	dek5	dek23	g14	hcf13	hcf50	Lcsl	1ty2	ms24	orpl	rd2	sftl	v24	wt2
agtl	Cg2	dek6	dek24	g15	hcf15	hcf101	Lctl	1w3	ms28	orp2	R£3	Sksl	v25	wygl
alhl	clhl	dek7	dek25	g17	hcf18	hcf102	lct2	1w4	Ms41	paml	Rf4	Snl	v26	у3
anll	Cltl	dek8	dek26	g18	hcf19	hcf316	Les3	ma 11	ms43	pam2	Rgd2	Spcl	v27	y11
aphl	cpl	dek9	dek27	g19	hcf21	hcf323	Les4	Ma12	Mscl	pbl	rgol	spc2	v28	y12
Asrl	cp2	dek10	dek28	g119	hcf23	hcf408	Les5	Mcl	Msc2	pd1	R11	spc3	v29	yd2
atsl	crl	dek11	dek29	g120	hcf26	hm2	Les6	meil	Mut	Pdf1	Rpl	sptl	v30	ys2
bafl	ctl	dek12	dek30	g121	hcf28	Hsf1	Les7	mepl	Mv1	pel	Rp5	spt2	Vsrl	Ysk1
Bif1	ct2	dek13	depl	grtl	hcf31	Ht2	Les8	mgl	nec4	pg13	Rp6	Supl	w2	zb7
brnl	ctol	dek14	dsyl	gs3	hcf34	Ht3	Les9	10,000	nec5	pg15	Rpp9	syl	w16	ZP8
bsl	d2	dek15	dsy2	gt1	hcf36	1 12	Les10	Mpll	nec6	pg16	Sdw1	tbl	w17	zpgl
btnl	d3	dek16	Dt5	hcfl	hcf38	181	Lfyl	Mr	nec7	Ph1	sel	tdl	wgsl	
bul	dal	dek17	g2	hcf2	hcf41	113	lul	msl	012	pil	senl	Thel	whpl	
bv2	dbl	dek18	G6	hcf3	hcf42	115	locl	ms3	ora2	p12	sen2	t11	wlul	
Bxl	dek1	dek19	ga2	hcf4	hcf44	116	lpl	ms20	ora3	ppgl	sen3	Tlrl	wlu2	
bz2	dek2	dek20	ga7	hef5	hcf46	117	ltel	Ms21	orol	prol	sen4	tpml	wlu3	
c2	dek3	dek21	ga8	hcf6	hcf47	118	Lte2	ms22	oro2	py2	sen5	trl	wlu4	
Cel	dek4	dek22	ga10	hcf12	hcf48	119	ltyl	ms23	Oroml	pyd1	sen6	Ufol	Wrk1	

LINKAGE MAP OF CORN (MAIZE) $(\frac{\text{Zea}}{1987} \text{ mays L.})$ (2N = 20) February 1987

Edward H. Coe, Jr., David A. Hoisington and M.G. Neuffer U.S. Dept. of Agriculture and Dept. of Agronomy Curtis Hall, University of Missouri Columbia, Missouri 65211

The following list, arranged by gene symbol, identifies the unit factors for which stocks are available in the Maize Genetics Stock Center (Department of Agronomy, University of Illinois, Urbana, Illinois 61801), those for which variants exist in generally available strains (e.g. isozyme variants), and those upon which current or recent research studies have been published or have been reported in the Maize Genetics Cooperation News Letter. The information tabulated includes the chromosome (L=long arm, S=short arm) and map position or approximate location, the name and phenotype, availability from the Stock Center (S), a photograph (P) in The Mutants of Maize (Neuffer, M.G., et al. 1968. Crop Sci. Soc. Amer., Madison, Wis.), and references to the original descriptions.

Databases are being compiled in our laboratory for recombinational information involving traditional loci as well as RFP's. This information will be available upon request.

The authors greatly appreciate the corrections supplied by fellow maize cooperators and encourage all those interested in maize genetics to make suggestions and/or corrections to this list.

SYMBOL	LOCATION	NAME, PHENOTYPE	S	P	REFERENCE
al	3L-141.0	anthocyaninless: colorless aleurone, green or brown plant, brown pericarp with Pl-RR	s	P	73
a2 a3	58-35 31-125	anthocyaninless: like al, but red pericarp with Pl-RR anthocyanin: recessive intensifier of expression of RL and BL in plant tissues	S	P	140
Ac	50 125	activator: designator for autonomous transposable elements; regulates Ds transposition and dissociation;		P	198
Ac2		ex. Ac9 designates element isolated from wx1-m9 activator: similar to Ac			60
Acol	4S	aconitase: electrophoretic mobility; monomeric			344
Aco2	-	aconitase: electrophoretic mobility			344
Aco4	3	aconitase: electrophoretic mobility; monomeric			344
Acpl	9	acid phosphatase (was Apl, Acphl, Phos): electrophoretic mobility; dimeric			114
Acp2 Acp4	1L-176	acid phosphatabe (was Api): electrophoretic mobility; monomeric acid phosphatabe: electrophoretic mobility			150
adl	1L-108	adherent: seedling leaves, tassel branches, and occasionally top leaves adhere	S	P	153
Adh1	4S-46	alconol denydrogenase: electrophoretic mobility; hybria bahas occur; nul allele is known; dimeric alcohol dehydrogenase: electrophoretic mobility; dimeric; null allele is known	э		299
Adkl	6S-0	adenylate kinase: electrophoretic mobility; plastidial			345
Adri ael	51-57	alcohol dehydrogenase regulator amvlose extender: elassy, tarnished endosperm: high amvlose content: starch branching enzyme	s	P	343
afdl	-	absence of first division: first meiotic division replaced by mitosis			110
agti	28-4	ageotropic: primary root unresponsive to gravity albescent plant: erratic development of chlorophyll; pale vellow endosperm	S	P	66 255
alhl -	1L-near bm2	histone Ia (was Bla): electrophoretic mobility	177.1	~	329
alpha	58-20	Al locus component (see beta): determines reduced aleurone and plant color, brown pericarp	ę	D	168
Ampl	lL-near fl	aminopetidase: electrophoretic mobility; monmeric; cytosolic		*	244
Amp2	1-near hml	aminopeptidase: electrophoretic mobility; monomeric			244
Amp 3	- 55-near az	aminopeptidase: electrophoretic mobility; monomeric aminopeptidase: electrophoretic mobility; monomeric			244
Amy 1		alpha amylase: electrophoretic mobility; monomeric			38
Amy2 anl	5S-near Mdh5	beta amylase: electrophoretic mobility; monomeric anther ear: and romonoecious dwarf, intermediate stature: few tassel branches: responds to sibberellins	s	р	70 80
anll	5S-near lul	anthocyaninless lethal: colorless aleurone; small kernels; embryo lethal			44
aphl	91-62	apphid resistance	S	p	36
asl	1-56	asymaptic synaptic failure of meiotic prophase chromosomes	s	P	15
Asrl	4S-19	absence of seminal roots			209
atsl	8	(see 2DD) arrazine susceptible: lacks glutathione S-transferase			117
B1	25-49	colored plant: anthocyanin in major plant tissues; some alleles affect aleurone and embryo color	S	P	76
B chr bal	31-94	B chromosome: supernumerary chromosome barren stalk: ear shoots and most tassel florets missing	S	P	1263
ba2	2-near ts1	barren stalk: like bal, but tassel more normal	S		126
bafl	9S-near wll 71-109	barren stalk fastigiate (was ba*=9): ear shoots missing; tassel branches erect branched sillese: branched ear and tassel: silke sheen:	S	P	45
beta		Al locus component (see alpha): determines aleurone and plant color, red pericarp			168
Bf1	9L-137	blue fluorescent: homozygous seedlings (homozygous or heterozygous anthers) fluoresce blue under	S	P	335
bf2	10L-30	ultraviolet, anthranile act present blue fluorescent: similar to Bfl in expression; shows earliers, stronger seedling fluorescence than Bfl	s		2
Bg	67 50	Bergamo: regulatory element mediating o2-mr		0	284
Bifl	8	blotched: colored patches on coloriess (c) algurone barren inflorescence (was Bif*-1440): florets missing from ear and tassel	•	£	234
bk2	9L-82	brittle stalk: brittle plant parts after 4-leaf stage	S	P	167
bm1 bm2	58-41 1L-161	brown midrib: brown pigment over vascular bundles of lear sheath, midrib, and blade brown midrib: like bml	s	ĸ	35
bm3	4-near sul	brown midrib: like bml (C.R. Burnham, unpublished)	s		162 219
bm4 Bpl	9L-141 71-71	brown midrib: like bml	S		160
brl	1L-81	brachytic: short internodes, short plant; no response to gibberellins	S	P	152 155
br2 br3	1L-near hul	brachytic: like bri brachytic: like bri	S		310
brnl	3S-near crl	brown aleurone: small, brown, defective kernel, brown embryo; seedling lethal			28 2
bsl	51-42	barren sterile	S	p	202
bt2	48-67	brittle endosperm: like btl; ADP glucose pyrophosphorylase electrophoretic mobility (G.F. Sprague, unpublished)	S	*	336
btnl	5	brittle node			151
bul	-	leaf burn: leaves show burning, sometimes horizontal bands, accentuated by high temperature browing alarit short futernodes, short alarit	S		98 172
bv2	-	brevis plant: plant height 30-50% of normal			256
Bx 1	45	benzoxazin: blue color reaction of crushed root tip with FeCl3, indicating cyclic hydroxamates present	c	p	52
DZI	95-31	bronze: modifies purple aleurone and plant color to pale or reddish brown; anthers yellow-iluorescent; UDPC-flavonol 3-O-glucosyl transferase	Ð	F	200
bz2	1L-106	bronze: like bzl; anthers not fluorescent			241
c1 c2	95-26 4L-117	colored aleurone: cl=coloriess; Cl=l#dominant coloriess coloriess: coloriess aleurone. reduced plant color	5	r	42
Carl	15	catalase regulator: enzyme activity level increased			290
Cat1 Cat2	5S-near Mdh5 1S	catalase: electrophoretic mobility; tetrameric catalase: electrophoretic mobility; null allele is known: tetrameric			18 28 7
Cat3	-	catalase: electrophoretic mobility; null allele is known; tetrameric			289
Cdhl	-	cfinnamyl alcohol dehydrogenase: electrophoretic mobility			92 39 247
cf12	-	complementary to fl2			245
Cg 1	3S-37	corngrass: narrow leaves, extreme tillering	S	P	309
Chl	2L-155	chocolate pericarp: dark brown pericarp	s	P	5
Cin	20 50	Cinteotl corn insert: repetitive sequences dispersed in the genome			302
clhl	38-52	chlorophyll: white to green seedlings, depending upon Cimi; pale yellow endosperm histone Ic: electrophoretic mobility	S		329
Clml	8	modifier of cll: greens cll seedlings; does not restore endosperm carotenoids	s		82
Cltl	8 10Lenear Pl	clumped tassel (was Cit*-985): variable dwarfing, developmental anomalies chloroplast mutator: like iil	s		101 233 331
cms-C	Hedi Al	cytoplasmic male sterility: female transmitted male sterility, C type; restored by Rf4			16
cms-S		cytoplasmic male sterility: female transmitted male sterility, S type; restored by Rf3			147 149
cms-T cpl	7S-near vp9	cytoplasmic male sterility: remale transmitted male sterility, lexas type; restored by KII KIZ collapsed: endosperm collapsed and partially defective			182
cp2	7S-near vp9	collapsed: endosperm rough, collapsed, partially defective; seedling very light green with darker streaks			237
Css1	35-14 9	crinkly leaves: plant short; leaves broad, crinkled sucrose synthase: sucrose synthase-2 of embryo and other tissues			195
ctl	8	compact plant: semi-dwarf plant			225
ct2	15	compact plant: semi-dwarf plant with club tassel			104

SYMBOL	LOCATION	NAME, PHENOTYPE	S	P	REFERENCE
ctDNA		chloroplast DNA: sequences or loci in chloroplast genome			
ctol	107	cob turned out: ear inverted to a sheet or tube, kernels internally placed; variable expression			342
CXI	10L-near bf2	catechol oxidase: electrophoretic mobility; no hybrid bands; null allele is known			262
dl	35-32	dwarf plant: plant and romonoecious short compact: responds to ethberelline	S	р	70
d2	3	dwarf plant: like dl			333
d3	95-59	dwarf plant: like dl			57
d5	28-34	dwarf plant: like dl	S	142	333
dal	9	dwarf plant: dominant (compare Mpl1), resembles di; not responsive to gibberellins	S	P	253
dbl		dichotamously branching plants (=dib); variable location of dichotamy, usually at 4-8th node (possible			201 202
1.1.1	10-27	association with aneuploidy)			005 00/
dek1	15-27	defective Kernel (was cirl, gayl, cir*-/94); germless, floury endosperm; anthocyanins and carotenoids absent defective kernel (was destallish); discolared constant endosperm; inviction			235 236
dek3	25	defective kernel (was gut-1289); germless			235 236
dek4	2L	defective kernel (was clf*-1024A): like dekl			235 236
dek5	35	defective kernel (was $sh = 874A$): shrunken endosperm; white seedling with green stripes			235 236
dekb	31	defective kernel (was sh*-62/D); shrunken endosperm; lethal			235 236
dekB	4L	defective kernel (was suf-116), shunken endosperm: lethal			235 236
dek9	5L	defective kernel (was crp*-1365): crumpled endosperm; lethal			235 236
dek10	6L	defective kernel (was cp*-1176A): collapsed endosperm; lethal			235 236
dek11	71	defective kernel (was et*-788); etched endosperm; lethal			235 236
dek13	91.	defective kernel (was cp ~ 0/3): collapsed endosperm; lethal			235 236
dek14	105	defective kernel (was cp*-1435): collapsed endosperm; lethal			235 236
dek15	10L	defective kernel (was cp*-1427A): collapsed floury endosperm; lethal			235 236
dek16	2L	defective kernel (was f1*-1414): floury endosperm; lethal			303
dek1/	3L 59	defective kernel (was $cp^{\pi}-2300$); collapsed endosperm; lethal			303
dek19	55 6L	defective kernel (was cp ^y JA); collapsed endosperm; lethal			303
dek20	8L	defective kernel (was cp*-1392A): collapsed endosperm; lethal			303
dek21	10L	defective kernel (was msc*-1330): aleurone mosaic of reduced anthocyanins; reduced carotenoids; lethal			303
dek22	IL	defective kernel (was cp*-1113A): collapsed endoperm; lethal			41
dek25	39	defective kernel (was dcr ^m -1425); defective crown; lethal			41
dek25	45	defective kernel (sh*-1169A); contapsed endosporm; lethal			304
dek26	5L	defective kernel (cp*-1331): collapsed endosperm; lethal			304
dek27	5L	defective kernel (was cp*-1380A): collapsed endosperm; lethal			304
dek28	65	defective kernel (was o*-1307A): opaque endosperm			304
dek29	91.	defective kernel (was cp~130/A): collapsed endospermi vlable			304
depl	6	defective pistils			203
Df	25	deficiency: general symbol for loss of segments of chromosome			
Dial	28	diaphorase: electrophoretic mobility; monomeric; cytosolic			344
dnl	41-137	diaphorage: electrophoretic mobility; dimeric; cytosolic	2		344
Ds	44 137	dissociation: designator for transposable factors regulated by Act modifies gene function and/or	S	P	198
		chromosome breakage (termed "Ds-2"); ex. Ds2 designates element isolated from Adhl-2Fll			
dsyl	-	desynaptic: pairing incomplete			108
dsy2		desynaptic: like dsyl	0	D	10/
DLA	33-0	sorted: regulated controlling element at Al, responding al-m alleles express colored dots on coloriess	0	r	204
Dt2	6L-44	dotted: like Dtl	S		242
Dt3	7L	dotted: like Dtl, but expression variable	S		242
Dt4	4	dotted: like Dtl, but dots chiefly on crown of kernel	S		61
Dr6	4-near sul	dotted: like Dtl	S		321
dul	10L-28	dull endospera: glassy, tarnished endosperm (P.C. Mangelsdorf, unpublished)	S		191
dvl	-	divergent: spindle nonconverging in meiosis in microsporocytes; male sterile	S		40
dyl	-	desynaptic: chromosomes unpaired in microsporocytes	S		224
E1 E2	-	esterase: electrophoretic mobility; hybrid bands occur; null allele is known			294
E3	35	esterase: electrophoretic mobility: hybrid bands occur			29 5
E4	3S-near cll	esterase (was Est4): electrophoretic mobility; no hybrid bands; null allele is known			121
E5-I	-	esterase: duplicate factor with E5-II; electrophoretic mobility			18 6
E5-II	-	esterase: duplicate factor with E5-I; electrophoretic mobility			186
E7	-	estorase: presence-absence			186
EB	3S-near g2	esterase: electrophoretic mobility; null allele is known			18 6
E9	-	esterase: electrophoretic mobility; null allele is known			186
E10	-	esterase: electrophoretic mobility	1		186
eg 1 E 41	26	expanded glumes: glumes open at right angle	S		33
ell	8L	- longate: chromosomes uncoiled during meiotic metaphase and anaphase; frequent unreduced gametes	S	P	269
En		enhancer: transposable element (equivalent to Spm); autonomous, regulates I transposition (e.g. at g2-m		P	251
		= pg - m = pg 14 - m			
Enpl	6L-near yl	endopeptidase: electrophoretic mobility; monomeric; null allele is known	e	D	200
fl	1L-86	eccess pices, scarred encosperm, virescent secaring	S	P	176
Feu	120.00	factor Cuna: controlling element of rl-cu	020	2	112
f11	2S-68	floury endosperm (= o4): endosperm opaque, soft; dosage effect	s	P	125
f12	4S-58	floury: endosperm opaque, soft (W.J. Mumm, unpublished)	S		228
FIL	81-0	floury	S		221
gl	10L-47	solden plant: seeding and plant with distinct vellow cast	S	P	70 72
g2	35-0	golden plant (= g5 = pg14); like g1, but more extreme; sheaths whitish yellow-green			137
g 5		(= g2)			0.855
Gb	95-near 17	golden plant (was 6*-185): like gl; lighter yellowish sheaths			238
ga2	51-55	gametophyte factor (= gay): Gai pollen grains competitively superior to gai on Gai silks cametophyte factor: Gai pollen grains comparificate and the to gai	5		31
ga7	3L-159	gametophyte factorig a7 pollen from heterozygotes 10-15% functional regardless of silk genotyne			266
g a8	9S-near lo2	gametophyte factor: Ga8 pollen grains competitively superior to ga8 on Ga8 silks			29 3
g a9		(= gal)			
gal0	C Linner	gametophyte factor			260
Gdh2	10 near vpo	grucamic deviding enase: electrophoretic Mobility			113
Ger		glucoside earworm resistance: designator for earworm resistance factors from Cateto Palha Roxa			213
g11	7L-36	glossy: cuticle wax altered; leaf surface bright, water adheres	s	P	160
g12	2S-30	glossy: like gli	S	P	123

SYMBOL	LOCATION	NAME, PHENOTYPE	S	P	REFERENCE
g13	4L-112	glossy: like gll	s		123
g14	4L-81	glossy (= gl16): like gl1 (G.F. Sprague, unpublished)			200
g15 g16	3L-61	glossy (was gl5-1): duplicate factor with gl20; like gl1 (G.F. Sprague, unpublished) glossy: like gl1 (G.F. Sprague, unpublished)	S		322
g17	3L	glossy (= gl12): like gl1 (G.F. Sprague, unpublished)			
g18 g19		glossy (= gl10): 11ke gl1 (G.F. Sprague, unpublished) glossy (= xpression poor (G.F. Sprague, unpublished)			
g110	Maria Contractoria	(= g18)	069		2021
g111 g112	2S-near Bl	glossy: like gll; abnormal seedling morphology (* el7)	S		318
g114	2	glossy: like gll	s		320
g115	9L-66	<pre>glossy: like gll; expressed after 3rd leaf (G.F. Sprague, unpublished) (m14)</pre>	S	P	3
g117	55-34	glossy: like gll, but semi-dwarf with necrotic crossbands on leaves	s		270
g118	8L-near f13	glossy: like gll; expression poor	s		4 230
g120	-	glossy (was gl-12); duplicate factor with g15; like g11 (G.F. Sprague, unpublished)			322
g121	105	glossy (was gl*-478B): like gll			230
Gotl	3L-near Mel	glutamate-oxaloacetate transaminame (possibly = Tal): electrophoretic mobility; glyoxysomal; null allele			288
Cot?	51-96	is known; dimeric			115
Got3	5S-near a2	giutamate-oxaloacetic transaminase: electrophoretic mobility; dimetric, nuti allete is known glutamate-oxaloacetic transaminase: electrophoretic mobility; mitochondrial; null allete is known			115
grtl	5L	green tip (was grt#-1308B): pale yellow seedling with green first leaf tip		B	230
gs1 gs2	2S-54	green stripe: grayish green stripes between vascular bungles on leaves; tissue wills green stripe: like gsl, but pale green stripes; no wilting (G.F. Sprague, unpublished)	S	P	15 201
gs3	6L	green stripe (was gs*-268): like gs2			230
hl	3	grassy tillers: numerous basal branches; vegetatively totipotent in combination with 1d1 and pel soft starch: endosperm soft, opaque	S		220
hcfl	2L	high chlorophyll fluorescence: affects NADP+ oxidoreductase			204
hcf2 hcf3	IS	high chlorophyll fluorescence: missing cytochrome f/bb complex high chlorophyll fluorescence (= hcf9): missing FSII thylekoid membrane core complex			204
hcf4	1L	high chlorophyll fluorescence: affects CO2 fixation			205
hcf5 hcf6	6S 1S	high chlorophyll fluorescence; affects PSII reaction high chlorophyll fluorescence; missing cytochrome f/b6 complex			206
hcf9	1.0	(= hcf3)			7.57. 22.23
hcf12 hcf13	11,	high chlorophyll fluorescence high chlorophyll fluorescence: Affects CO2 fixation			171 205
hcf15	2L	high chlorophyll fluorescence: affects photophosphorylation			171
hcf18	5L-near prl 3L	high chlorophyll fluorescence (= hcf43): major loss of PSI; other thylakoid complexes reduced high chlorophyll fluorescence: affects PSII thylakoid membrane core corelex			205
hcf21	5L	high chlorophyll fluorescence: affects CO2 flxation, Rubisco			205
hcf23	4S 6S	high chlorophyll fluorescence: affects photophosphorylation			171 205
hcf 28	10L	high chlorophyll fluorescence: affects CO2 fixation			206
hcf31	18	high chlorophyll fluorescence: missing chlorophyll a/b binding protein			206
hcf36	6L	high chlorophyll fluorescence: affects electron transport			206
hcf38	5L	high chlorophyll fluorescence: affects cytochrome f/bb complex, alpha and beta components of CF1 high chlorophyll fluorescence: affects RSII thulakoid membrane core correlated in the second secon			171 205
hcf42	91	high chlorophyll fluorescence: affects Rubisco			205
hcf43	11	(= hcfl8)			205
hcf46	3L	high chlorophyll fluorescence			171
hcf47	10S	high chlorophyll fluorescence: affects cytochromes			206
hcf 50	1L	high chlorophyll fluorescence: missing FSI thylakoid membrane core complex			205
hcf101	7L 81.	high chlorophyll fluorescence (was Mu-5*); affects PSI thylakoid membrane core complex high chlorophyll fluorescence; affects cytrochrome f/fs complex (D. Miles, unpublished)			206
hcf316	105	high chlorophyll fluorescence: affects chlorophyll a/b binding protein			206
hcf323	6S 6L	high chlorophyll fluorescence: affects photophosphorylation, coupling factor high chlorophyll fluorescence: affects chlorophyll a/b bindige protein			206
Hex 1	3S-near crl	have inserved a sectophoretic mobility; null allele is known; monomeric; cytosolic			346
Hex2	6L-near Pt1	hexokinase: electrophoretic mobility; null allele is known; monomeric; cytosolic Halmithexonim carbonym susceptibility; disease lectors on Lavyes, black masses of fruiting bolies on	2	P	346
		ears with race 1			
hm2 Hel	9L-near bk2 78-0	H, carbonum susceptibility; like hml; masked by Hml hairy sharb; shundar hairs on laaf sheath	s	p	227
Hafl	5	hairy sheath frayed (was Hof*-1595): pubescent sheaths and leaf margins; liguled enations at leaf margins	Č	÷.	20
Htl Ht2	2L-121	Helminthosporium turcicum resistance	S		130
Ht3	-41	H. turcicum resistance: (from Tripsacum floridanum)			132
I		inhibitor ("Ci-I, inhibitor allele at Cl locus): also commonly used as a general symbol for inhibition and the controlling elements responding to En			65
id1	lL-near anl	indeterminate growthi requires extended growth and short days for flowering; vegetatively totipotent	S		308
Idbl	81	with gtl and pel			115
Idh2	6L-near w14	isocitrate dehydrogenase: electrophoretic mobility; dimeric			115
1g 1	3L-82 7L-52	indeterminate gemetophyte: polyembryony, heterofertilization, polyploidy, and rogenesis for an etrotomer many variable white strikes on leaves: conditions chloroplast defects that are	S	P	157
- 1-		cytoplasmically inherited	100	2	565. SEAS
1 <u>j</u> 2	1L 75-20	lojap striping: like ijl; chloroplast inheritance unknown Inteneffar: Intenetflar: arthoryanin planents	s	р	230
Inv	10 10	Inversion: general symbol for inversion of a segment of chromosome	S	P	
isl	101-near Bl	cupulate interspace	s		95
jl	8L-42	japonica striping: white stripes on leaf and sheath; not expressed in seedling	s	Р	72
j2 K	4L-106	japonica striping: extreme white striping of leaves, etc. (R.A. Emerson, unpublished)	S	P	81
K3L	3L-107	knob: general symbol for Constitutive hereofromatic elements			59
K10	10L-near sr2	abnormal-10: heterochromatic appendage on long arm of chromosome 10; neocentric activity distorts	S	P	181
Knl	1L-near Adhl	knotted: scattered proliferation of tissue at vascular bundles on leaf	S	P	29
Krn	107	kernel row number: designator for factors determining kernel row number	e	P	213
14	-	luteus: lethal yellow seedling	S	P	142
16	95-near bzl	luteus: like 14 (W.H. Eyster, unpublished)	S		88
110	6L-19	luteus: like 14	S		277
111	6S 6L16	luteus: yellow seedling with green leaf tips	S		8
114	54-10	AULOUD AANG AT			

SYMBOL	LOCATION	NAME, PHENOTYPE	S	P	REFERENCE
113	10L-91	luteus (was 1*-59A, 1*-Neuffer2): 11ke 14			19 2
115	6L-30	luteus (was 1*-Blandy3, 1*-Brawn): like 14			281
116	15	luteus (was 1*-515): like 14; leaves bleach to paler yellow in patches			230
117	2L	luteus (was 1 ^{x-344}); like 14; leaves with lighter yellow crossbands luteus (was 1 ^{x-344}); like 14			230
119	105	luteus (was 1*-425): 11ke 14			230
lal	48-55	lazy plant: prostrate growth habit	S	P	143
Lel	10L-65	red leaf color: red color in leaf surface	s		21
Letl	-	inylakold membrane polypepide: electrophoretic mobility			216
lct2	-	thylakoid membrane polypeptide: presence absence			216
Lesl	2S-near wtl	<pre>lesion (was Les*-843): large necrotic lesions resembling disease lesions formed by fungal infections on susceptible lines</pre>	S		231
Les2	1S-near srl	lesion (was Les*-845A): small white lesions resembling disease lesions formed by fungal infections on resistant lines	S		231
Les4	2L	lesion (was Les*-1375); late expression of large necrotic lesions			128
Les5	15	lesion (was Les*-1449): like Les2			128
Les6	105	lesion (was Les*-1451): like Les4			128
Les/	IL 95	lesion (was Les^{n-1461}): late expression of small chlorotic lesions			128
Les9	7L-near ral	lesion (was Les [*] -2005): late expression of small necrotic lesions			128
Les10	2-near v4	lesion (was Les*-A607): like Les1			129
Lfyl	-	leafy: increased number of leaves			301
1g1 1g2	28~11 31-93	liguieless: liguie and auricle missing; leaves upright, enveloping	S	P	24
Lg 3	3-57	liguless; the ig, less extreme	S	P	248
111	10L-near bf2	lineate leaves: fine, white striations on basal half of mature leaves	S	P	50
11s1	15	lethal leaf spot: chlorotic-necrotic lesions resembling Helminthosporium carbonum infection	S		341
102	98-50	linoleic acid: lower ratio of cleate to linoleate in kernel	s		224
locl	-	low of content in kernel: associated with albino seedlings			257
lpl	4	lethal pollen: 1pl pollen fails in competition with Lpl			223
ltel	2-near fll	latente: heat tolerance			210
Lte2	10L-near gl	latente: heat tolerance			211
1tv2	-	Ight yellow endosperm			63
lul	58-29	lutescent: pale yellow green leaves	S		306
1wl	lL-near Adhl	lemon white: white seedling, pale yellow endosperm	S	223	338
1w2	SL-near pri	lemon white: like lwi	S	P	3.35
1w4	4-near zb6	lemon white: duplicate factor with lw3, like lw1			338
1y1		(= psl-lyc)			
mal1	9	multiple aleurone layering: recessive interacts with two complementary dominants Mal2 and an unnamed			208
Ma12	4	factor, giving multiple cell layers			208
Mcl	-	mucronate: obserm			28 5
Mdhl	8	malate dehydrogenase: electrophoretic mobility; null allele is known; mitochondrial			239
Mdh2	6L-near w14	malate dehydrogenase: electrophoretic mobility; null allele is known; mitochondrial			239
Mdh4	JL-130	malate dehydrogenase: electrophoretic mobility; null allele is known; mitochonarial malate dahydrogenase: electrophoretic mobility; null allele is known;			239
Mdh5	58-17	malate dehydrogenase: electrophoretic mobility; null allele is known; cytosolic			239
Mel	3L-117	malic enzyme: electrophoretic mobility			115
meil	-	meiosis: chromosomes sticky in metaphase I; male sterile			106
Mer	56	modifier of endosperm protein; affects quantifies of Frot2 protein forms Maya estworm resistance; designator for earworm resistance factors from TAC Maya			212
mg 1	-	miniature germ (replaces mg of Wentz): germ 1/4 to 1/3 of normal; viable			165
mil	1	midget plant: small plant (H.S. Perry, unpublished)	S		
mmn 1	lL-near anl	modifier of mitochondrial malate dehydrogenases: mobilities	c	D	239
mn2	7	miniature seed: small, somewhat derective kernel; rully viable miniature seed: small kernel, loose pericarp; extremely defective but will germinate (R.J. Lambert, unpublished)	S	r	10.5
Mp Mp11	lL-near Adhl	modulator of pericarp: transposable factor affecting P1 locus; parallel to Ac-De miniplant: dominant and monoecious, intermediate dwarf; probable allele of D8; not responsive to			26 119
Ma	UC 17	gibberellins (M. Freeling, unpublished)		P	263
Mrh	95-near 1/	mutator or x-m; transposable factor, regulates xi-m mutation mutation		r	243
ms 1	6L-near sil	male sterile: anthers shriveled, not usually exserted			311
ms2	9L-64	male sterile: like mol	S		86 88
msj	2	male sterile: like msl			80 88
ms5	5-near v3	male sterile: anthers not exserted	s		13
ms7	7L-near ral	male sterile: like ms5	S		13
ms8	8L-28	male sterile: like ms5	S	P	13
ms9 ma10	15-near PI 10L-near bf2	male sterile: like ms5	S		13
msll	10	male sterile: like ms5	S		13
ms12	1	male sterile: like mol	S		13
ms13	58	male sterile: like ms5	S		13
ms14 ms17	18-23	male sterile: like msl	S		78
ms20	-	male sterile			88
Ms21	-	<pre>male sterile: pollen grains developing in presence of Ms21 are defective and nonfunctional if sks1, normal if Sks1</pre>			169 292
ms22 ms23	-	male sterile male sterile: allelic to me#-Bear7			348
ms 24	<u>2</u>	male sterile			348
ms 28		male sterile: anaphase I disturbed			106
Ms41	4L	male sterile (was Max-1995): like msl			238
ms43 Mecl	BL II.	mages storije: anaphase i irregular mages (was Mex-791A): alaurone movals for anthoryanis color			238
Msc2	55	mosaic (was Mac*-1124B); aleurone mosaic for anthocyanin color			238
Mstl	10L-67	modifier of R-st: affects expression of R1-st	S		6
mtDNA		mitochondrial DNA: sequences or loci in the mitochondrial genome			28.0
Mut	2S-near ol2	mutator: treety transposable element; Mul designates element isolated from Adh1-53034 mutator: controlling element for bilement			272
Mvl	-	resistance to maize mosaic virus I ("corn stripe")			22
nal	3L-105	nana plant: short, erect dwarf; no response to gibberellins	S	P	135 173
na2	58-near bil	nana plant: like nal (N.S. Perry, unpublished)	S		307
NCS1	-	nonchromosomal stripe; maternally inherited light green lear striping nonchromosomal stripe; maternally inherited bale green and depressed striping; mitochondrial	S		43

SYMBOL	LOCATION	NAME, PHENOTYPE	s	P	REFERENCE
NCS3	-	nonchromosomal stripe: maternally inherited striations, distorted plants; mitochondrial	S		43
necl nec2	8L-near f13 15-34	necrotic (was nec*-6697, sienna*-7748): chlorotic seedling that stays rolled, wilts and dies necrotic (was nec*-8147): green seedling develops necrotic lesions at 2-3 leaf stage lethal (E.G.	s s		192
nec3	5-near btl	Anderson, unpublished) necrotic (was nec%-409): seedling emerge with tightly rolled leaves that turn brown and die without unrolling: manually unrolled leaves tan with dark brown crossbands	S		229
nec4	2S-near d5	necrotic (was nec#-516B): seedling yellow, leaf tips necrotic			127
nec5	4L 5S-near a2	necrotic (was nec*=642A); pale green seedling becoming necrotic; dark brown exudate necrotic (was nec*=642A); like nec3			230
nec7	5L SL	necrotic (was nec*-756B): seedling becoming necrotic in crossbands			230
nl l	10L-near bf2	narrow leaf: leaf blade narrow, some white streaks (R.A. Emerson, unpublished)	S	P	10.6
NPI	03	nucleolus organizer: codes for fibosomal KNA Native Plants, Inc.: designator for loci defined by restriction fragment polymorphisms	9		190
o1 o2	4L-near g13 78-16	opaque endosperm: endosperm starch soft, opaque (W.R. Singleton and D.F. Jones, unpublished) opaque endosperm: like ol; high lysine content (W.R. Singleton and D.F. Jones, unpublished)	S	P	
04 05	7L-near ral	(= fil) opaque endosperm: like ol; virescent seedling (= cral)	S		276
07	10L-87	opaque: like ol; high lysine content	S		214
09	1	opaque endosperm: crown opaque and light in color, frequently with a cavity; base or abgerminal side of kernel often corneous	S		222
010	-	opaque endosperm: like ol	S		222
012	2	opaque endosperm: thin, opaque, somewhat shrunken kernels wich greyish cast opaque endosperm: thin, etched or scarred kernels, variable in size; plants chlorophyll deficient and	2		222
		small, with pollen but few ears			
013 0e1	105-16	opaque endosperm: opaque, etched kernels with rim of corneus starch on abgerminal side old gold strine: variable bright vellow strines on leaf blade	S	P	222
ora2	-	orange endosperm			62
ora3	-	orange endosperm			63
0101	05	with Groul			192
oro2	5	orobanche: like orol			192
orpl	48	orobanche modifier; partially corrects bleaching of oroi orange pericarp (duplicate factor with oro2); pericarp orange over orpl orp2 kernels			232
orp2	10L	orange pericarp (duplicate factor with orpl)	2.81	1255	232
oyl	10S-12	oil yellow: seeding oily greenish-yellow	S	P	87
P1	1S-26	pericers color: red pigment in cos and pericarp	S	Р	69 18 0
paml	-	plural abnormalities of meiosis: desynchronized meiotic divisions and premeiotic mitosis; plants male sterile, incompletely female sterile			109
pam2	-	plural abnormalities of meiosis: like paml		D	107
pb1 pb4	6L-near yl	piebald leaves: Very light, irregular green bands on lear piebald leaves: like pbl	S	P	58
pd 1	-	paired rows: single vs. paired pistillate spikelets; pdl is found in teosinte also			166
Pdfl	2	thylakoid membrane polypeptide: dominant increase in electrophoretic mobility perennialism: we etatively totionetent in combinations with still and idi			217
pg 11	6L-38	pale green: duplicate factor with pg12; seedling light yellowish green; mature plant pale and vigorous	S	Р	267
pg 12	9-61	pale green: duplicate factor with pgll	S		267
pg 14	194	(= g2)	s	P	251
pg 15	15	pale green (was ppg = 340B): seedling light yellowish green; bleaches to near white in patches			230
Pg 10 Pg d 1	6-near rgdl	pale green (was pg ~-219); seedling light yellowish green 6-phoshogluconate debydrogenase; electrophoretic mobility; null allele is known; dimeric			115
Pgd2	3L-near ts4	6-phosphogluconate dehydrogenase: electrophoretic mobility; null allele is known; dimeric			115
Pgm1 Pgm2	1L-near Prot1	phosphoglucomutase: electrophoretic mobility; null allele is known; monomeric			115
Phl	4S-0	pith abscission: cob disarticulation			96
Phil	1L-149	phosphoexose isomerase: electrophoretic mobility; null allele is known; dimeric; cytosolic			115
pii		Peg" expression) in pil pi2 ears			155
p12		pistillate florets duplicate factor with pil			133
pn1 pm1	BL-49 BL-near ts4	purple plant: sunlight-independent purple pigment in plant pale midrih: midrih ad diacent tissue lighter green	S	P	76 25
Pnl	7L-112	papyrescent glumes: long, thin papery glumes on ear and tassel	S	P	97
pol	65-4 51	polymitotic (= ms4): repeats 2nd meiotic division	S	P	11 230
prl	5L-67	red aleurone: changes purple aleurone to red	S	P	68
prol	8L-near f13	proline requiring (" of): crumpled opaque kernel; green stripe lethal seedling			99
psl	58-39	protein: embryo protein moornity variations pink scutellum: viviparous; endosperm and scutellum pink, seedling white with pink flush	S	P	317
Pt1	6L-60	polytypic ear: proliferation of pistillate tissue to produce irregular growth on ear and tassel	s	P	226
Px1 Px2	-	peroxidase: no hybrid bands; nul allele is known peroxidase: electrophoretic mobility			185
Px3	7L-near Pnl	peroxidase: electrophoretic mobility			18 5
Px4 Px5	- C	peroxidase: electrophoretic mobility; null allele is known			185
Px6		peroxidase: presence absence			18 5
Px7	-	peroxidase: electrophoretic mobility; null allele is known			18 5
Px0 Px9	-	peroxidase: electrophoretic mobility; null allele is known			23
py1	6L-69	pigmy plant: leaves short, pointed; fine white streaks	S	P	333
py2	IL 9S-near w2	pigmy: like pyl			230
R1	10L-61	colored: red or purple color in aleurone and/or anthers, leaf tip, brace roots, etc.	s	P	68
ral	7L-32	ramosa: ear branched, tassel conical	S	P	13 102
ra3	4	ramosa, irregular kernel placement; tassel many-pranched, upright (K.A. Brink, unpublished) ramosa: (R.A. Brink, unpublished)	S	r	
rdl	lL-near Adhl	reduced plant: semi-dwarf plant	s		225
rd 2	6L	reduced plant: like rdl, but not as extreme rtheemal DNA: rDNA5.85, rDNA185, and rDNA255 located in NOB on 65, rDNA55, on 21 near Mel			105
rDL		receptor of Dotted			315
Rf1	3S-near Lg 3	fertility restorer: restores fertility to cms-T; complementary to Rf2	S		146
Rf3	2L	fertility restorer: see Kri fertility restorer: restores fertility to cms-S	2		30
Rf4	2	fertility restorer: restores fertility to cms-C	-		116
Rg 1	3-59	ragged leaves: chlorotic tissue between veins of older leaves, causing holes and torn appearance	S	P	27
Rgd2	5	ragged leaves (was Rgd*-1445): leaves narrow and distorted; tillering	0	1	234
rgol	-	reversed germ orientation: embryo faces base of ear; variable frequency, maternal trait			28 3
Ril	4S-27	resistance to meiminthosporium maydis: chlorotic-lesion reaction with race O rind abscission: cob disarticulation	5		96

Bit Bit <th>SYMBOL</th> <th>LOCATION</th> <th>NAME, PHENOTYPE</th> <th>s</th> <th>P</th> <th>REFERENCE</th>	SYMBOL	LOCATION	NAME, PHENOTYPE	s	P	REFERENCE
<pre>phy decids 4 percent phy resistance to Pacific app. phy definition of phy decide app. phy decide app. phy definition of phy decide app. phy</pre>	Rp 1	10s-0	resistance to Puccinia spp.		P	187 188
Spin Description Description <thdescription< th=""> <thde< td=""><td>Rp3 Rp4</td><td>3-near g10 45-24</td><td>resistance to Fucchia spp.</td><td>S</td><td></td><td>349</td></thde<></thdescription<>	Rp3 Rp4	3-near g10 45-24	resistance to Fucchia spp.	S		349
Best Difference Picture to Pacting are provided for particular Best	Rp5	10S-near Rp1	resistance to Fuccinia sp.	0		28 6
number number<	Rp 6	10S-near Rp1	resistance to Puccinia app.			349
ref Denser mil trong heads Denser mil trong heads Dense mil	Rsl	105-near xp1	resistance to Fuccinia polysora rouch sheath: extreme ligule disorganization	S		159
11 Dirmart Q. recitant secondary recess for or abare ID Part Q.	rs2	1-near asl	rough sheath	S		1 59
bit Uncerner bit milliants chaptergement is acceptered additive minimized prime status 3 <td>rtl</td> <td>3S-near Cgl</td> <td>rootless: secondary roots few or absent</td> <td>S</td> <td>P</td> <td>139</td>	rtl	3S-near Cgl	rootless: secondary roots few or absent	S	P	139
Soli 8 set of model (last first set)) for formed is recipiones, recipiones 10 Soli assort endowers (last set or contex with all last last set) 33 Soli assort endowers (last set or contex with all last last) 33 Soli assort endowers (last set or contex with all last) 33 Soli assort endowers (last set or contex with all last) 33 Soli assort endowers (last set or contex with all last) 33 Soli assort endowers (last set or contex with all last) 33 Soli assort endowers (last set of last set of l	Sad 1	10L-near bf2	seed color component at ki: anthocyanti pigmentation in alectrone shikimate dehydrogenase: electrophoretic mobility; monomeric; plastidial			344
<pre>ad mathef{producer: hash ngst context of the wij: light yills reducerns: freshy wrinkled in 11874 # 0 33 ad act and speer doublest factor with add _ 118 and _ 33 ad act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 33 add act and speer doublest factor with add _ 118 and _ 34 add act and speer doublest factor with add _ 118 and _ 34 add act and speer doublest factor with add _ 118 and _ 34 add act and speer doublest factor with add _ 118 and _ 34 add act and speer doublest factor with add _ 118 and _ 34 add act and speer doublest factor with add _ 34 add act and speer doublest factor with add _ 34 add act and _ ac</pre>	Sdwl	8	semi-dwarf plant (was Sdw*-1592): shortened internodes, erect leaves			19
<pre>send 7 set consigned depictate factor with send "moment more setures" setures and set consigned depicts factor with send 1 he send 3 setures and 1 setu</pre>	sel	3	sugary-enhancer: high sugar content with sul; light yellow endosperm; freely wrinkled in 111677a			89
 and 1 and tendogerm dupicate factor with and 11ke and 2000 and tendogerm dupicate factor with and 2000 and tendog	sen2	7	soft endosperm: duplicate factor with seni			328
<pre>above 1 - above the set of t</pre>	sen3	1	soft endosperm: duplicate factor with sen4; like sen1			328
seed 5 int and provide provide and provide only seed 11 at endospermal yight are are normal 32 at 12 and	sen4 sen5	2	soft endosperm: duplicate factor with send			328
afil - email fist type: tars on afil plant produce only small fist endosperms: Mafil are streng synthamic tars of a dispersion for the strength of the strength o	sen6	5	soft endosperm: duplicate factor with sen5			328
ab. 98-29 introduction inflated relations in a product in a product inflated relation in a product in a product inflated relation inflated relat	sftl Søl	2	small fiint type: ears on sft1 plants produce only small flint endosperms; +/sft1 ears are normal string och revined redicals.	c	D	64
af endopermin homoteriesse af endopermin homoteriesse b	shl	9S-29	strunken: inflated endosperm collapses on drying, forming smoothly indented kernels; sucrose synthase-1	S	P	134
Abd DeCNL2 mitrorics intrince, transport, weet karnak collapse on dryin, becoming angular and britcher ADPC 5 P 109 32 and 02-20 mitrorics intrince, transport, weet karnak collapse on dryin, becoming angular and britcher ADPC 5 P 109 32 and 20-20 mitrorics internet intrince, and the argument of the ADPC 5 P 109 32 and 20-20 mitrorics intrince intrin		01 1/1 0	of endosperm; homotetramer	200 201	- 12	
abd 5: matrixeteric collegend, chalty endograme 5: approximately and the set of the s	sh2	31-141.2	shrunken: inflated, transparent, sweet kernels collapse on drying, becoming angular and brittle; ADPG nyronbsonborylase reduced	S	P	189
ali 62-20 atty (me-sf): multiple silks in asy iterils tank at six asy iterils tank in any iterils in any iteril	sh4	5L	shrunken: collapsed, chalky endosperm	S		337
<pre>number of a set of a set</pre>	sil	6L-20	silky (-ms-si): multiple silks in ear; sterile tassel with silks	S		91
<pre>iki, normal if Soli 17.2-9 alashed larws: larws alls inglicitinally by netrotic straks Soli 17.2-9 alashed larws: larws alls inglicitinally by netrotic straks Soli 10.2-9 alashed larws: larws all straks introduced larws and sheak at lowering supporting 11.2-9 alashed larws larws all straks and sheak at lowering supporting 11.2-9 alashed larws larws all straks and sheak at lowering supporting 11.2-9 alashed larws larws all straks and sheak at lowering supporting 11.2-9 alashed larws larws all straks and sheak at lowering supporting 12.3-9 alashed larws larws all straks and sheak at lowering supporting 12.3-9 alashed larws larws all straks and sheak at lowering supporting 12.3-9 alashed larws larws all straks and sheak at lowering supporting 12.3-9 alashed larws larws all straks and sheak at lowering supporting 13.0-9 attraks all straks and sheak at lowering support all straks 13.0-9 attraks and straks at straks and sheak at lowering support all straks 13.0-9 attraks and straks at straks at lowering support all straks 13.0-9 attraks and straks at straks at lowering support all straks 13.0-9 attraks and straks at straks at lowering support all straks 13.0-9 attraks and straks at lowering support all straks at lowering support all straks 13.0-9 attraks and straks at lowering support all straks at lowering support all straks 13.0-9 attraks at lowering support all straks at lowering support all st</pre>	Sksl	21-near v4	slikless ears: pistlis abort, no sliks suppressor of sterility: pollen grains developing in presence of Ms21 are defective and nonfunctional if	5		169 292
all 7-30 a slambel laware ills induction law in transmission control the TA-MA born in TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the TA-MA is a second in the transmission control the transmissi control the transmissi	112226	23.3.22	skal, normal if Skal			
and 100-res assorted distances color b b c 100 add - supercelide distances in extrementic alterchowdrial f f f add - supercelide distances in extrementic alterchowdrial f f add - supercelide distances in extrementic alterchowdrial f f add - supercelide (vas spc-170), taxes and sheath at lowering supporting t f add - - supercelide (vas spc-170), taxes and sheath at lowering supporting f f add -	sll	7L-50 6L-59	slashed leaves: leaves slit longitudinally by necrotic streaks	S	12	123
Sed - supercrifts dimensions electromboritie mobility; dimerics plantified 9 Sed Junear igit spectic dimensions included dimensions 224 Sed Junear igit spectic dimensions 231 spectic dimensions spectic dimensions spectic dimensions spectic dimensions spectic dimensions spectic dimensions spectic dimensions spectic dimensions spectic dimensions <td>Snl</td> <td>10L-near Rl</td> <td>sautellar node color</td> <td>3</td> <td>£.</td> <td>100</td>	Snl	10L-near Rl	sautellar node color	3	£.	100
Scil - supercrite dimension is termeric; mitched withing 9 Scil Wremeric issues wak 234 Scil preckied (was gre-1375); preme sending with light preme speckies 230 scil issues wak 230 scil preckied (was gre-242A); preme sending with light preme speckies 230 scil speckied (was gre-242A); preme sending with light preme speckies 230 scil speckied (was gre-242A); preme sending with dark green speckies 230 scil speckied (was gre-242A); preme sending with dark green speckies 230 scil speckied (was gre-242A); preme sending with dark green speckies 300 scil speckied (was gre-242A); preme sending with dark green speckies 300 scil dark for specific (was gre-242A); preme sending with dark green speckies 300 scil dark for specific (was gre-124A); premeins sending with dark green speckies 300 scil dark for specific (was gre-124A); premeins sending with dark green speckies 300 scil dark for specific (was gre-124A); premeins sending with dark green speckies 300 scil dark for specific (was gre-14A); premeins sending with dark and lintees (was how speckies); premeinsedintees);	Sod 1		superoxide dismutase: electrophoretic mobility; dimeric; plastidial			9
Spect 10 Spect 10%, Lase -1070; Lase -1070; Lase -1070; Drown specifing on Lawwe and sheath at Howering; supporting 234 spect 1 Impactic (uss gpt-252A); green seeding with light green species 300 spect 1 Spect 10 (uss gpt-250; green seeding with light green species 200 spect 1 Spect 10 (uss gpt-250; green seeding with light green species 200 spect 2 Spect 10; Spect 10; Jule green seeding with light green species 200 spect 2 Spect 10; Spect 10; Jule green seeding with light green species 200 spect 4 Spect 10; Sp	Sod 3	-	superoxide dismutase: tetrameric; mitochondrial			9
<pre>tiscue veak tiscue veak t</pre>	Spc1	3L-near ig1	speckled (was Spc#-1376, Les#-1376): brown speckling on leaves and sheath at flowering; supporting			234
and and a producted (sam pro-SiG): promound line with a box of the product of t	0002	17	Lissues weak			220
Spen suppressormutator: transposible denset (equivalent to Sh); sutcomboud, regulates transposition of 199 etcl 21 spotted (des spet-44b); pade green seeling with dark green spots 230 etcl 18-0 spotted (des spet-44b); pade green seeling with dark green spots 230 etcl 18-0 stickle lawse; vitue stripes on leaf and heath 5 P etcl 18-0 stickle lawse; vitue stripes on leaf and heath 5 P 84 46-0? stickle lawse; vitue stripes on leaf and heath 5 P 10 84 64-0? stickle vitue stripes on leaf and heath 5 P 10 84 64-0? stickle vitue stripes on leaf and heath 5 P 10 84 64-0? stickle vitue stripes on leaf and heath 5 P 10 84 64-0? stickle vitue stripes on leaf and heath 5 P 10 84 64-0? stickle vitue stripes on vitue stripes on vitue stripes on monool opous chromosome 193 85 71 71 71 71 71	spc2 spc3	3L	speckled (was spc202A); green seedling with light green speckles speckled (was spc-553C); green seedling with dark and light green speckles			230
clement at al-al, etc.you for a set of the secting with dark green spotsyou for a set of the secting at the secting of the secting at the secting of the secting at the section at the	Spm		suppressor-mutator: transposable element (equivalent to En); autonomous, regulates transposition of			199
<pre>still i-G spint is a point of the point of the spin of the spin of the point o</pre>	entl	21.	element at al-ml, etc.			230
<pre>st1 ds-0 striate leaves: many white striations or strips on leaves (A.K. Brunnor, unpublished) S p 144 striate leaves: while strips on leaf and sheath b p 144 striate leaves: while strips on leaf and sheath b p 144 striate leaves: the strips of the</pre>	spt2	45	spotted (was spt spts-1269A): like sptl			230
status interviews: mile stripe on test me status stripe stripe stripe interviews: mile stripe on test me striped stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe stripe <t< td=""><td>srl</td><td>15-0</td><td>striate leaves: many white striations or stripes on leaves (A.M. Brunson, unpublished)</td><td>S</td><td></td><td>122</td></t<>	srl	15-0	striate leaves: many white striations or stripes on leaves (A.M. Brunson, unpublished)	S		122
522 (see Cas1) (see Cas1) 5 P 14 541 45-62 sugary: endopers wrinkled and translucent when dry: sewest at mike stage S P 15 541 45-64 sugary: endopers wrinkled and translucent when dry: sewest at mike stage S P 15 541 45-64 sugary: endopers wrinkled and translucent, somether sewethed S P 15 541 1	sr2 sr3	105	striate leaves: while stripes on lear and sheath	S	P	104
sel 45-62 sticky chromosomes small plant, striate leaves, pitted kernel resulting from sticky chromosomes S P 14 46 45 sticky chromosomes immail plant, striate leaves, pitted kernel resulting from sticky chromosomes S P 47 - grippe scutellum 2 kernel to semi-transport. 49 - string scutellum 2 kernel to semi-transport. 49 - resulting String	Ss2		(see Css1)	15		
ac. 28 ac. 27.38 ac. 27.47 ac. 27.47 ac. 27.47 ayl - ac. 27.47 ac. 27.47 ac. 27.47 ayl - ac. 27.47 ac. 27.47 ac. 27.47 ayl - receptored transice (nose that to send-transporent ac. 27.47 Tai - transminase (nose that to send-transporent ac. 27.47 Tai - transminase (nose that to send-transporent ac. 27.47 tai - transminase (nose that to send-transporent ac. 27.47 tai - transminase (nose that to send-transporent ac. 27.47 tai - transminase (nose that to send t	stl	45-62	sticky chromosome: small plant, striate leaves, pitted kernels resulting from sticky chromosomes	S	P	14
Supl-appresent: modifies of kernels to send-transparent193T-reciprocal translocation: general symbol for exchange of parts between two nonhomologous chromosomesST-reciprocal translocation: general symbol for exchange of parts between two nonhomologous chromosomesST-reciprocal translocation: general symbol for exchange of parts between two nonhomologous chromosomesST-transminase (possibly "Got]: electrophoretic mobility; hybrid bands occur34T-transminase (possibly "Got]: electrophoretic mobility; interim the translocation: environment the translocation of the translocation of translocation o	su2	6L-58	sugary: endospeta wiinkied aik transincent when dry, sweet at mirk stage	S	E	88
971 - yellow Social limit 316 971 - relation 971 317 971 - relation 971 318 971 - relation 971 318 971 - relation 971 318 971 - relation 971 316 971 - relation 971 971 - relation<	Sup1	1	suppressor: modifies o2 kernels to semi-transparent			193
Tail-transminuse (possibly = Gocil): electrophoretic mobility; hyrith hands occur#35tillS-mear bilthick tassel dwarf: (E.G. Anderson, unpublished)34till-thick tassel dwarf: (E.G. Anderson, unpublished)34till-thick tassel dwarf: (E.G. Anderson, unpublished)232Tincl-thick tassel descriptoretic booking; dimarts: plastidial34Tincl-thick tassel descriptoretic mobility; dimarts: plastidial34Tincl-triboge houghhate isomerase: electrophoretic mobility; momeric; promotic34Tinl-triboge houghhate isomerase: electrophoretic mobility; momeric; promotic34Tinl-thick tassel dwarf: (E.G. Manderson, unpublished)34Tinl-triboge houghhate isomerase: electrophoretic mobility; momeric; promotic34Tinl-thick tassel dwarf: (E.G. Manderson, unpublished)34Tinl-thick tassel dwarf: (E.G. Manderson, unpublished)34 <td>T</td> <td>570</td> <td>yellow scuterium reciprocal translocation: general symbol for exchange of parts between two nonhomologous chromosomes</td> <td>S</td> <td>P</td> <td>316</td>	T	570	yellow scuterium reciprocal translocation: general symbol for exchange of parts between two nonhomologous chromosomes	S	P	316
11 II-near Adl teosinte branched: many tillers; nodes with slender branches ending in ubranched tassel 34 12 1 thick tassel dwarf: (5.6. Adderson, upublished) 3 194 13 - thick tassel dwarf: (5.6. Adderson, upublished) 232 141 - thick tassel dwarf: (5.6. Adderson, upublished) 232 151 II. tillersi (was Tir*-1590): extreme tillering 232 151 II. tillersi (was Tir*-1590): extreme tillering 238 151 11 tillersi (was Tir*-1590): extreme tillering 238 151 11 tillersi (was Tir*-1590): extreme tillering 238 151 11 tillersi (was Tir*-1590): extreme tillering 238 151 12 - trinse phosphate isomerase: electrophoretic mobility; dimaric; plastidial 344 151 8 trinse phosphate isomerase: electrophoretic mobility; monmaric; cytosolic 344 151 8 trinse phosphate isomerase: electrophoretic mobility; monmaric; cytosolic 344 151 8 trinse phosphate isomerase: electrophoretic mobility; monmaric; cytosolic 346 151 8 154 155 <td>Tal</td> <td></td> <td>transaminase (possibly = Gotl): electrophoretic mobility; hybrid bands occur</td> <td></td> <td></td> <td>18 5</td>	Tal		transaminase (possibly = Gotl): electrophoretic mobility; hybrid bands occur			18 5
rel3terminal ear: stalked eir appendiges at tig: værying to infolded ears594Thel-theortbandt sensitive: wensitive to Eradicane232til-tasselless232til-tasselless233TylILtillered (was Tir-1900) extreme tillering238Tyl-trideophashte isomerase: electrophoretic mobility; dimeric; plastidial344Tyl2-trideophashte isomerase: electrophoretic mobility; dimeric; plastidial344Tyl3-trideophashte isomerase: electrophoretic mobility; monneric; cytosolic344Tyl43trideophashte isomerase: electrophoretic mobility; monneric; cytosolic344Tyl43trideophashte isomerase: electrophoretic mobility; monneric; cytosolic344Tyl4-theoretaket distictour ws. decusate phyllotaxy in ear axis166tastassel seed: tassel pistillate and pendant; if removed, small ear with irregular kernel placement57tas14.10tassel seed: tassel pistillate and pendant; if removed, small ear with irregular kernel placement57tastassel seed: tassel pistillate to mixed, compact; ear with irregular kernel placement577tassel seed: tassel pistillate and pendant; if removed, small parts orange with Pl-WR or Pl-RR; growt retarded5723tassel seed: tassel pistillate to mixed, compact; ear with irregular kernel placement577tassel seed: tassel pistillate and most other plant parts orange with Pl-WR or Pl-RR; growt retarded<	tb1	IL-near Adhl	teosinte branched: many tillers; nodes with slender branches ending in unbranched tassel thick tassel dwarf: (E. Anderen, unpublished)			34
The linear thiocarbamate sensitive: sensitive to Eradicane 252 Tirl i. tillered (was Tr*-1390): extreme tillering 202 Tirl i. tillered (was Tr*-202): extreme tillering 202 Tirl i. tillering 202	tel	3	terminal ear: stalked ear appendages at tip; varying to infolded ears	S		194
1111Classelless20271111111111112237171-46toopod: mmy tillers, narcw lawes, many sall partially podde ears, tassel simpleSP72101-45toopod: like Tpl344721-trices phosphate isomerase: electrophoretic mobility; dimeric; plastidial344711-trices phosphate isomerase: electrophoretic mobility; dimeric; plastidial344713-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic34471431-near Rg1-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic34471431-near Rg1-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic344714-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic346714-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic346714-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic346714-trices phosphate isomerase: electrophoretic mobility; monmeric; cytosolic346714-tassel sed: tassel pistiliate on trice; electron tricesSP7210-4tassel sed: tassel pistiliate on trice; electron tricesSP7345-53tassel sed: tassel optiliate on trice; ear with irregular kernel placementSP7441-101tuncate: kernels enclosed in long glumes; tassel glumes large, coarseSP25474 </td <td>Thel</td> <td>-</td> <td>thiorarbamate sensitive: sensitive to Eradicane</td> <td></td> <td></td> <td>252</td>	Thel	-	thiorarbamate sensitive: sensitive to Eradicane			252
Tp-17L-46teopod: nany fillers, narrow leaves, many small partially podded ears, tassel simpleSP178Tp12-triose phosphate isomerase: electrophoretic mobility; dimeric; plastidial344Tp13-triose phosphate isomerase: electrophoretic mobility; dimeric; plastidial344Tp14-triose phosphate isomerase: electrophoretic mobility; dimeric; plastidial344Tp14Jinear Bg1-triose phosphate isomerase: electrophoretic mobility; monomeric; gvtosolic346tp14Jinear Bg1-thow ranked eari disticious w. decuessete phyllotaxy in ear axis166ts1-two ranked eari disticious w. decuessete phyllotaxy in ear axis166ts218-24tassel seci: tassel pistillate and pendant; if removed, small ear with irregular kernel placementSPts218-24tassel seci: tassel pistillate and pendant; if removed, small ear with irregular kernel placementSPts431.65tassel seci: tassel tassel charket, pistik, with pistillate and staminate floretsSP240ts418-65tassel seci: tassel pistillate on kernel seciesSP240Tp144L-101tuntate: kernels enclosed in long glumes; tassel glumes large, coarseSP9Wol-umbranchet tassel with secies rapidlySP56Vi91-63virescent: like vi, but oder leaves have white stripesSP56Vi91-64virescent: like vi, but oder leaves have white stripesSP56	Tirl	IL	Lasselless tillered (was Tir*-1590): extreme tillering			238
Tp21045teopod: like Tp1SP250Tp11-triose phosphate isomerase: electrophoretic mobility; dimeric; plastidial344Tp138triose phosphate isomerase: electrophoretic mobility; monomeric; visoslic344Tp143near Rg1triose phosphate isomerase: electrophoretic mobility; monomeric; visoslic344Tp143near Rg1triose phosphate isomerase: electrophoretic mobility; monomeric; visoslic344Tp14-tbylakof peptide modifier: dominant decrease in electrophoretic mobility;346Tp1-two-ranked ear: distichous vs. decusate phyllolaxy in ear axis166ts125-74tassel seed: tassel postility emonant cassel57ts431-65tassel seed: nearly normal tassel with scattered, short sike57Ta545-53tassel seed: nearly normal tassel with scattered, short sike57Ta611-158tassel seed inearly normal tassel signes; tassel giumes large, coarse57Ta611-154tassel with one spike334334WCuntracter, vielowish with seeding al-run9393vieneent: like vi, but greens alcowly577vieneent: like vi, but greens alcowly577vieneent: like vi, but greens alcowly577vieneent: like viene set with green slowly5735vieneent: like viene5733Vieneent: like viene5733 <td< td=""><td>Tpl</td><td>7L-46</td><td>teopod: many tillers, narrow leaves, many small partially podded ears, tassel simple</td><td>S</td><td>P</td><td>178</td></td<>	Tpl	7L-46	teopod: many tillers, narrow leaves, many small partially podded ears, tassel simple	S	P	178
Trinetrinephosphate isomerase: electrophoretic mobility; dimeric plastidial344Tp138trinetrine344Tp14Jurnear Rg1itrinephosphate isomerase: electrophoretic mobility; monomeric; vytosolic344Tp14Jurnear Rg1-thise phosphate isomerase: electrophoretic mobility; monomeric; vytosolic346Tp14-thise phosphate isomerase: electrophoretic mobility; monomeric; vytosolic346Tp14-thise phosphate isomerase: electrophoretic mobility; monomeric; vytosolic346Tp14-thise phosphate isomerase: electrophoretic mobility; monomeric; vytosolic346Tp1-thise electrophoretic mobility; monomeric; vytosolic346tp14Junear Rg1-thise electrophoretic mobility; monomeric; vytosolic346tp14Junear Rg1-thise electrophoretic mobility; monomeric; vytosolic346tp14Junear Rg1tassel sed: tassel patililate and pendant; fir tenved, small ear with irregular kernel placementS74tp24Junearity normal tassel with scattered, short silksS7979Tp46Li-158tassel sed: tassel closed in long plumes; tassel glumes large, coarseSP248Ufo1-unbrached it assel closed in long plumes; tassel glumes large, coarseSP26Ufo1-unbrached it assel vith end sizing al-ruqSP56vitacent: like vity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms9191 </td <td>Tp2 Tp1</td> <td>- 45</td> <td>teopod: like Tpi triose phosphate isomerase: electrophoretic mobility: dimeric: plastidial</td> <td>S</td> <td>Р</td> <td>344</td>	Tp2 Tp1	- 45	teopod: like Tpi triose phosphate isomerase: electrophoretic mobility: dimeric: plastidial	S	Р	344
Tp138triose phosphate isomerase: electrophoretic mobility; monomeric; cytosolic344Tp14J.Fnear Rg1triose phosphate isomerase: electrophoretic mobility; monomeric; cytosolic346tp14J.Fnear Rg1-thylakold peptide modifier: dominant decrease in electrophoretic mobility215ts1-thylakold peptide modifier: dominant decrease in electrophoretic mobility166ts225-74tassel seed: tassel occusate phyliotaxy in ear axis166ts215-24tassel seed: tassel compact, upitpht, with pitfillate and staminate floretsSPts4J.r65tassel seed: marly normal tassel with scattered, short silksSP235Tp346-53tassel seed: nearly normal tassel with scattered, short silksSP240Tp14-unstached tassel ologial in ing glumes; tassel glumes large, coarseSP240ubil-unstached tassel with one spikeSP240Ufo1-unstached tassel with one spikeSP240ubil-unbility; of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms93ubil-ubility: solid, greens rapidlySP76v191-63virescent: light yellow sedifig, greens rapidlySP56v251-107virescent: light yellow sedifig, greens rapidlySP56v444-near Tu1virescent: light yellow sedifig, greens slowlySP56v3	Tp12	-	triose phosphate isomerase: electrophoretic mobility; dimeric; plastidial			344
InternalDefinitionDefinitionSecSecImage: Section of the	Tp13	8 31-rear Pal	triose phosphate isomerase: electrophoretic mobility; monomeric; cytosolic			344
trl-two-ranked earl distichous vs. decusate phylicitaxy in ear axis166tsl28-74tassel sed: tassel pistillate and pendant; if removed, small ear with irregular kernel placementS74ts218-24tassel sed: tassel compact, upright, with pistillate and staminate floretsSP74ts43L-65tassel sed: tassel compact, upright, with pistillate and staminate floretsSP74ts545-33tassel sed: tassel pistillate to mixed, compact; ear with irregular kernel placementSP240tu14L-101tuntcate: kernels enclosed in long glumes; tassel glumes large, coarseSP243ub1-unbrancheit tassel with one spikeSP232ub1-unbrancheit tassel with one spikeSP232ub2-University of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms93vl9L-63virescent: like vl, but greens angidlySP56vl25-24virescent: like vl, but older leaves have white stripesSP56vl3545virescent: like vl, but older leaves have white stripesSP56vl3-virescent: like vl, but older leaves have white stripesSP56vl3-virescent: like vlS2555757vl5114virescent: like vlVirescent: like vlS25555vl6114virescent: like vlt	tpml	-	thy a koid peptide modifier: dominant decrease in electrophoretic mobility			215
Est25-74tassel seed: tassel pistiliate and pendant; if removed, small ear with irregular kernel placementS74ts215-24tassel seed: tassel opact, upright, with pistiliate and staminate floretsSP74ts431-65tassel seed: tassel compact, upright, with pistiliate and staminate floretsSP74Ts545-53tassel seed: tassel pistiliate to mixed, compact; ear with irregular kernel placementSP240Tul4L-101tunicate: kernels enclosed in long glumes; tassel glumes large, coarseSP240ub1-unbranched: tassel with one spikeSP237ub1-unstable factor for orange: anthers, silks, and most other plant parts orange with Pl-WR or Pl-RR; growth retarded332UKCUniversity of Missouri, Columbia: designator for locid defined by restriction fragment polymorphisms93uqubiquitous: controlling element madiating al-ruqSP56V25L-107virescent: like vl, but greens lowlySP56V35L-455virescent: like vl, but older leaves have white stripesSP57v135L-near Tulvirescent: like vlsu57525v142L-near Tulvirescent: like vlsu52557v13-virescent: like vlsu52555v1410virescent: like vlsu52555v158L-14virescent: like vlsu52555v16	trl		two-ranked ear: distichous vs. decussate phyllotaxy in ear axis			166
ts2IS-24tasel sed: like ts1, but branches pendant rather than whole tasselSP74ts43L-65tassel sed: tassel compact, uright, with pistillate and staminate floretsSP74Ts54S-53tassel sed: tassel pistillate to mixed, compact; ear with irregular kernel placementSP74Ta61L-158tassel sed: tassel pistillate to mixed, compact; ear with irregular kernel placementSP240ub1-unbranched: tassel with one spikeSP4849Ufo1-unstable factor for orange: anthers, silks, and most other plant parts orange with Pl-WR or Pl-RR; growth retardedSP237UMCUniversity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms ubiquicus: controlling element mediating al-ruq 9399v19L-63virescent: like vl, but greens slowlySP5v35L-107virescent: like vl, but older leaves have white stripesSP5v42L-83virescent: like vlSP5v57S-24virescent: like vlSP5v14L-near fulvirescent: like vlSS255v158L-14virescent: like vlSS255v158L-14virescent: like vlSS255v168L-14virescent: like vlS255v174virescent: like vlS255v1810virescent:	681	25-74	tassel seed: tassel pistillate and pendant; if removed, small ear with irregular kernel placement develops	s		74
ts64 ts5JL-D5 tassel seed: tassel compact, upright, with pistillate and staminate floretsSP254 254 79Ta6lL-158 tassel seed: tassel pistillate to mixed, compact; ear with irregular kernel placementSP240Tu14L-101 untrate: kernels enclosed in long glumes; tassel glumes large, coarseSP248Ufol- unstable factor for orange: anthers, silks, and most other plant parts orange with Pl-WR or Pl-RR; growth retarded332UMCUniversity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms9UM- ubiquitous: controlling element mediating alruq919L-63virescent: like vil, but greens slowlySP2145virescent: like vil, but greens slowlySP56vi21453virescent: like vil, but older leaves have white stripesSP56vi3.52Virescent: like vil, but older leaves have white stripesSP56vi3.52Virescent: like vil, but green tip; greens slowlySS57vi3.52Surescent: like vil, but older leaves have white stripesSS255vi3.52Virescent: like vil, but green tip; greens slowlyS255vi68L-14virescent: like vil, but green tip; greens slowlyS255vi814virescent: like vil, but green tip; greens slowlyS255vi810virescent: like vil, G.G. Anderson, unpublished) <t< td=""><td>ts2</td><td>18-24</td><td>tassel seed: like tsl, but branches pendant rather than whole tassel</td><td>S</td><td>P</td><td>74</td></t<>	ts2	18-24	tassel seed: like tsl, but branches pendant rather than whole tassel	S	P	74
13-513	ts4 Te5	31-65	tassel seed: tassel compact, upright, with pistillate and staminate florets	S	P	254
Tul $4L-101$ tuntcate: kernels enclosed in long glumes; tassel glumes large, coarseSP4849ubl-umbranched: tassel with one spikeSP237ubrow-umstable factor for orange: anthers, silks, and most other plant parts orange with Pl-WR or Pl-RR; growth retarded332UMCUniversity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms93vl9L-63virescent: yellowish white seedling, greens rapidlySPv25L-107virescent: like vl, but greens slowlySP56v35L-45virescent: like vl, but older leaves have white stripesSP56v42L-83virescent: like v2SP56v575-24virescent: like v3SP56v125L-near Tulvirescent: like v3S255v13-virescent: like v4v1S255v13-virescent: like v1S255v13-virescent: like v1S255v148Lvirescent: like v1S255v1510virescent: like v1S255v1610virescent: like v1 (E.G. Anderson, unpublished)S255v242Lvirescent: like v1S205v2515virescent (was v*-750; yreling white seedling; greens from base upward230v2625virescent (was v*-550; yreling white seedling; greens from base upward <td>Ta6</td> <td>1L-158</td> <td>tassel seed: tassel pittilate to mixed, compact; ear with irregular kernel placement</td> <td>S</td> <td>P</td> <td>240</td>	Ta6	1L-158	tassel seed: tassel pittilate to mixed, compact; ear with irregular kernel placement	S	P	240
ubranched:Lassel with one spikeSP23/Ufol-unstable factor for orange:ant beta factor for factor for basefor factor for factor fo	Tul	4L-101	tunicate: kernels enclosed in long glumes; tassel glumes large, coarse	S	P	48 49
UNCgrowth retarded93UMCUniversity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms93v19L-63virescent: yellowish white seedling, greens rapidly\$ Pv25L-107virescent: like v1, but greens slowly\$ Pv35L-45virescent: light yellow seedling, greens rapidly\$ Pv42L-83virescent: like v2\$ Pv57S-24virescent: like v1, but older leaves have white stripes\$ Sv64L-near Tulvirescent: like v2\$ Sv15L-45virescent: like v2\$ Sv15L-near ys1virescent: like v2\$ Sv15L-near ys1virescent: like v2\$ Sv15L-near ys1virescent: like v3\$ 255v13virescent: like v2\$ 255v144virescent: like v2\$ 255v1510virescent: like v2\$ 255v168L-14virescent: like v1, but greening from base to t1p\$ 255v1810virescent: like v1\$ 255v1810virescent: like v1 (E.G. Anderson, unpublished)\$ 200v234-near su1virescent: like v1\$ 230v242Lvirescent (was v*-424): like v1230v2515virescent (was v*-590A): like v1230v262Svirescent (was v*-590A): like v1230	Ufol	2	unbranched: tassel with one spike unstable factor for any entry of the provided of the provide	S	P	332
UMCUniversity of Missouri, Columbia: designator for loci defined by restriction fragment polymorphismsUqubiquitous: controlling element mediating al-ruq93v19L-63virescent: yellowish white seedling, greens rapidlySPv25L-107virescent: like v1, but greens slowlySPv35L-45virescent: light yellow seedling, greens rapidlySPv42L-83virescent: like v2SPv575-24virescent: like v1, but older leaves have white stripesSPv64L-near Tulvirescent: like v2SPv15L-145virescent: like v3S255v125L-near ys1virescent: like v3S255v13-virescent: like v4S255v144virescent: like v4S255v1510virescent: like v4S255v168L-14virescent: like v4S255v174virescent: like v4S255v1810virescent: like v4S255v1810virescent: like v4S255v1911subscent: like v4S255v1810virescent: like v4S255v1910virescent: like v4S255v1610virescent: like v4S255v174virescent: like v4S255v1810virescent: like v4S	national National		growth retarded			23777
vi9L-63wint secting element metaling alreq95vi9L-63virescent: yellowish white seedling, greens rapidlySPvi5L-107virescent: like vi, but greens slowlySPvi2L-83virescent: like vi, but greens slowlySPvi2L-83virescent: like vi, but older leaves have white stripesSPvi2L-84virescent: like vi, but older leaves have white stripesSPvi2L-84virescent: like vi, but older leaves have white stripesSPvi25L-near virescent: like vi, but older leaves have white stripesSPvi25L-near virescent: like vi, but green tip; greens slowlyS255vi3-virescent: like vi, but greening from base to tipS255vi68L-14virescent: like vi, but greening from base to tipS255vi610virescent: like vi, but greening from tips and margins inwardS17vi4-near sulvirescent: like vi (E.G. Anderson, unpublished)S200vi234-near sulvirescent: like vi (E.G. Anderson, unpublished)S230vi15virescent (was v*-424): like vi230230vi230virescent (was v*-590A): like vi230230virescent (was v*-590A): like vi230230230virescent (was v*-590A): like vi230230virescent (was v*-590A): like vi230<	UMC		University of Missouri, Columbia: designator for loci defined by restriction fragment polymorphisms			03
v2 $5L-107$ virescent: like vl, but greens slowlySP72v3 $5L-45$ virescent: light yellow seedling, greens rapidlySP56v4 $2L-83$ virescent: like v2SP56v57S-24virescent: like v1, but older leaves have white stripesSP56v64L-near Tulvirescent: like v2SS57v125L-near ys1virescent: like v2S255v13-virescent: like v2S255v168L-14virescent: like v2S255v174virescent: like v1, but greening from base to tipS255v1810virescent: like v1, but greening from base to tipS255v218Lvirescent: like v1 (E.G. Anderson, unpublished)S17v221L-near sulvirescent: like v1 (E.G. Anderson, unpublished)S230v242Lvirescent (was v*-424): like v1230230v2515virescent (was v*-59): greenish white seedling; greens from base upward230v262Svirescent (was v*-590A): like v1230v277Lvirescent (was v*-590A): like v1230	v1	9L-63	usiquicous: controlling element meniating al-ruq virescent: yellowish white seeding, greens rapidly	S	P	56
v3 $3L-43$ virescent: light yellow seedling, greens rapidlySP56v4 $2L-83$ virescent: like v2SP56v57S-24virescent: like v1, but older leaves have white stripesSP56v64L-near Tulvirescent: like v2SS75v125L-near ys1virescent: like v3S255v13-virescent: like v4S255v168L-14virescent: like v1, but greening from base to tipS255v1610virescent: like v1S255v1810virescent: like v1S255v218Lvirescent: like v1 (E.G. Anderson, unpublished)S17v221L-near sulvirescent: like v1 (E.G. Anderson, unpublished)S200v242Lvirescent (was v*-424): like v1230230v2515virescent (was v*-424): like v1230230v262Svirescent (was v*-590A): like v1230230v277Lvirescent (was v*-590A): like v1230	v2	5L-107	virescent: like vl, but greens slowly	S	P	72
v57S-24virescent: like v1, but older leaves have white stripesSP56v84L-near Tulvirescent: like v2SS57v125L-near ys1virescent: like v3S255v13-virescent: first leaf with green tip; greens slowlyS255v168L-14virescent: like v2S255v174virescent: like v2S255v1810virescent: like v1, but greening from base to tipS255v218Lvirescent: like v1S255v218Lvirescent: like v1 (E.G. Anderson, unpublished)S17v234-near sulvirescent: like v1 (E.G. Anderson, unpublished)S230v242Lvirescent (was v*-424): like v1230230v2515virescent (was v*-590A): like v1230230v262Svirescent (was v*-590A): like v1230v277Lvirescent (was v*-590A): like v1230	v3 v4	2L-83	virescent: light yellow seedling, greens rapidly virescent: light yellow seedling.	S	P	56
vb $4L-near Tul$ virescent: like $v2$ S57 $v12$ $5L-near ys1$ virescent: like $v3$ S255 $v13$ -virescent: like $v1$ S255 $v16$ $8L-14$ virescent: like $v2$ S255 $v17$ 4virescent: like $v1$, but greening from base to tipS255 $v16$ 10virescent: like $v1$, but greening from base to tipS255 $v18$ 10virescent: like $v1$ S255 $v14$ 4-near sulvirescent: like $v1$ (E.G. Anderson, unpublished)S17 $v22$ 1L-near anlvirescent: like $v1$ (E.G. Anderson, unpublished)S200 $v24$ 2Lvirescent (was v^*-424): like $v1$ 230230 $v25$ 15virescent (was v^*-53): geling with green leaf tip and midrib230 $v26$ 2Svirescent (was v^*-590A): like $v1$ 230 $v27$ 7Lvirescent (was v^*-590A): like $v1$ 230	v5	7S-24	virescent: like vl, but older leaves have white stripes	S	P	56
vil-virescent: like vis255vil-virescent: like vi\$255vil4virescent: like vi\$255vil0virescent: like vi\$255vil10virescent: like vi\$255vil10virescent: like vi\$255vil10virescent: like vi\$255vil10virescent: like vi\$255vil8Lvirescent: like vi\$255vil11-mear anivirescent: like vi\$17vil4-mear sulvirescent: like vi\$\$vil21\$virescent: like vi\$\$vil21virescent (was v*-424): like vi\$\$\$vil15virescent (was v*-424): like vi230230230vil22515virescent (was v*-590A): like vi230230vilvirescent (was v*-590A): like vi230230230vilvirescent (was v*-590A): like vi230230vilvirescent (was v*-590A): like vi230230vilvirescent (was v*-590A): like vi230vilvirescent (was v*-590A): like vi230vilvirescent (was v*-590A): like vi230vilvirescent (was v*-590A): like vi230vilvilvil230vilvilvilvilvil230vil	v8	4L-near Tul	virescent: like v2	S		57
v16BL-14virescent: like v2S255v174virescent: like v1, but greening from base to tipS255v1810virescent: like v1S255v218Lvirescent: like v1S255v218Lvirescent: like v1S17v221L-near anlvirescent: like v1 (E.G. Anderson, unpublished)S17v234-near sulvirescent: like v1 (E.G. Anderson, unpublished)S20v242Lvirescent (was v*-424): like v1230230v2515virescent (was v*-424): greenish white seedling; greens from base upward230v262Svirescent (was v*-590A): like v1230v277Lvirescent (was v*-590A): like v1230	v13	-	virescent: first leaf with green tip; greens slowly	S		255
VI/ 4 virescent: like v1, but greening from base to tip S 255 V18 10 virescent: like v1 S 255 v21 8L virescent: like v1 S 17 v22 1L-near anl virescent: like v1 (E.G. Anderson, unpublished) S 17 v23 4-near sul virescent: like v1 (E.G. Anderson, unpublished) S 1 v24 2L virescent (was v*-424): like v1 S 230 v25 15 virescent (was v*-424): like v1 230 v26 2S virescent (was v*-59)(a): like v1 230 v27 7L virescent (was v*-59(a): like v1 230	v16	8L-14	virescent: like v2	S		255
v21 8L virescent (was v*-25): grainy virescent, greening from tips and margins inward \$ 17 v22 1L-near anl virescent: like v1 (E.G. Anderson, unpublished) \$ v23 4-near sul virescent: like v1 (E.G. Anderson, unpublished) \$ v24 2L virescent (was v*-424): like v1 \$ v25 15 virescent (was v*-424): like seedling; greens from base upward \$ v26 2S virescent (was v*-590A): like v1 \$ v27 7L virescent (was v*-590A): like v1 \$	v1/ v18	10	virescent: like vi, but greening from base to tip virescent: like vi	S		255
v22 1L-near anl virescent: like vl (E.G. Anderson, unpublished) S v23 4-near sul virescent: like vl (E.G. Anderson, unpublished) S v24 2L virescent: (was v*-424): like vl 230 v25 1S virescent (was v*-424): virescent (was v*-453): vellowish white seedling; greens from base upward 230 v26 2S virescent (was v*-590A): like vl 230 v27 7L virescent (was v*-590A): like vl 230	v21	8L	virescent (was v*-25): grainy virescent, greening from tips and margins inward	S		17
v24 2L virescent (was v*-424): like vi 230 v25 1S virescent (was v*-453): greenish white seedling; greens from base upward 230 v26 2S virescent (was v*-453): yellowish white seedling with green leaf tip and midrib 230 v27 7L virescent (was v*-590A): like vi 230	v22	1L-near anl	virescent: like vi (E.G. Anderson, unpublished)	S		
v25 1S virescent (was v*-17): greenish white seedling; greens from base upward 230 v26 2S virescent (was v*-453): yellowish white seedling with green leaf tip and midrib 230 v27 7L virescent (was v*-590A): like vl 230	v24	2L	virescent (was v*-424): like vl			230
v20 25 v1rescent (was v*=453): yellowish white seedling with green leaf tip and midrib 230 v27 7L v1rescent (was v*=590A): like v1 230	v25	15	virescent (was v*-17): greenish white seedling; greens from base upward			230
	v20	25 7L	virescent (was v~+3); yellowish white seedling with green lear tip and midrib virescent (was v*-590A): like v1			230
v25 95 virescent (was v*=27): like vl 230	v28	95	virescent (was v*-27): like vl			230

SYMBOL	LOCATION	NAME, PHENOTYPE	S	P	REFERENCE
v30	9L-87	virescent (was v*~8587): like vl	00000		44
val	7L-near ijl	variable sterile; male sterile with some fertile anthers	S		12
Vg 1	1L-85	vestigal glume: glumes very small, cob and anthers exposed	S	P	319
vpl	3L-near ts4	viviparous: embryo fails to become dormant; chlorophyll and carotenoids unaffected; anthocyanins in aleurone suppressed	S		85
vp2	58-38	viviparous: embryo fails to become dormant; white endosperm, white seedling; anthocyanins unaffected	S	P	85
vp5	1S-1	viviparous: like vp2	S	P	273
vp7	100 0000	(= psl)			
vp8	1L-154	viviparous: embryo fails to become dormant; chlorophyll and carotenoids unaffected; small, pointed-leaf seedlings	S		274
vp9	7S-25	viviparous (also known as y7): like vp2	S	P	274
Verl	lOL	virescent striped (was Vsr*-1486): virescent seedling; greens to white and yellow striped plant	023		238
WI	6L-near w14	white: white seedling	S		70 71 175
W2	101-77	white: white seedling; endosperm pitted and spotted			1//
w5	21-111	white: like vp2	S	r	57
w11	67 - 78	white: like wi	0		57
w14	61-13	white: like wi	e		53
w16	7L-near vn9	white the			218
w17	7S-near Hal	white			218
Wc1	9L-107	white cap; kernel with white crown and pale vellow endosperm	S		163
wd 1	95-near yg2	white deficiency: white seedling: deficiency for distal half of first chromomere of short arm	S	P	197
wgsl	5L	white green sectors (was sct*-206B): white seedling with green sectors			230
whp1	2L	white pollen: duplicate factor with c2 for yellow pollen and for anthocyanins			46
wil	6L-near yl	wilted: chronic wilting, delayed differentiation of metaxylem vessels	S		259
wlul	3L	white luteus (was w1*-28): pale yellow seedling			230
w1 u2	7L	white luteus (was wl - 543A): like wlul			230
wl u3	8L	white luteus (was wl*-203A): like wlul			230
wlu4	9L	white luteus (was wl *-41A): like wlul			230
WIKI	38	wrinkled kernel (was wrm-1020): Kernels small and wrinkled	0		2.36
wei wei	-	white sheath: light yellow lear shearns; dupilcate factor with ws2	e e		154
we3	25-0	white sheath be wat	5	P	265
WED	40 0	weak striped plant: maternally inherited pale striping			28
wt1	25-60	white tip: tip of first leaf white and blunt	s		324
wt2	4S	white tip (was cb*-10): seedling with white leaf tip and crossbands on first 2 leaves			230
wx 1	9S-56	waxy: amylopectin (stained red by iodine) replaces amylose (blue staining) in endosperm and pollen; starch-granule-bound NDP-starch glucosyl transferase	S	P	47
wyg 1	7L-near ral	white yellow green			218
yl	6L-17	white endosperm: reduced carotenoid pigments in endosperm; some alleles affects green pigments in seedlings	S	P	51
y3	2S-near all	white endosperm: like yl			249
y7	-	white endosperm (also known as vp9, z1)			
y8	75-18	white endosperm: pale yellow endosperm	S		141
yy	105-24	white endosperm: pale yellow endosperm, slightly viviparous; green to pale green seedings and plants	S		2/9
y10	56	white encopserm: pale yellow encosperm; white seeding	0		323
v12	-	white endopsemi the vil			323
vd2	3L-near lg2	vellow dwarf			278
yg1	5L-near v2	yellow-green: yellow-green seedling and plant	S		83
yg 2	98-7	yellow-green: like ygl	s	P	138
ysl	5L-75	yellow stripe: yellow tissue between leaf veins, reflects iron deficiency symptoms	S	P	10
ys2	15	yellow stripe: yellow tissue between leaf veins			2.58
ye3	3L-near Rg1	yellow stripe: like ysl	S		350
zl	4-near sul	yellow streaked (was Ysk™-844): longitudinal yellow streaks top 3rd of mature leaves (≪ y7-z)			234
zbl	-	zebra crossbands: yellowish crossbands on older leaves	S		55
zb2	-	zebra crossbands: crossbands on seedling leaves	S		330
ZDJ	SL-near v2	zebra crossbands: yellowish crossbands on older leaves (M. Demerec, unpublished)	S		100
204	4-79	zebra crossbands: regularly spaced crossbands on earlier leaves; enhanced by cool temperatures	2	r	122
z b7	11.	zebra crossbalds, regularly spaced crossbalds of earlier reaves, enfanced by coor temperatures	0		230
Z 168	9-near wx1	zebra crossbands (was Atcl, cl.*-1443); yellow-green crossbands on older leaves; strong anthocyanin expression in leaf tin, cl.*-1443);			234 238
Zer		Zapalote Chico earworm resistance: designator for earworm resistance factors from Zapalote Chico			212
znl	10L-26	zebra necrotic: necrotic tissue appears between veins in transverse leaf bands on half-grown or older plants	S	P	120
zn2	-	zebra necrotic: like znl	S		103
Zp		zein polypeptide: designator for loci determining zein polypeptides			313 314
zpg 1	-	zebra-stripe pale green			63

REFERENCES TO ORIGINAL DESCRIPTIONS AND DESIGNATIONS (gene symbol(s) referenced included within brackets) (MNL = Maize Genetics Cooperation News Letter)

Anderson, E.G. 1921. Cornell Univ. Agr. Exp. Sta. Memoir 48:533-554. (sml) Anderson, E.G. 1955. MRL 27:5. (bf2) Anderson, E.G. 1955. MRL 27:5. (bf2) Anderson, E.G. 1955. MRL 27:5. (bf1) Anderson, E.G. 1957. J. Ultratruct. Res. 45:84-406. (l11) Bacham, N.D., et al. 1973. J. Ultratruct. Res. 45:84-406. (l11) Bacham, A.M. 1952. Genetics 17:415-431. (ms5 ma7 ms6 ms0 ms1 ms12 ms13 ms14 ral) Bacdle, G.W. 1931. Cornell Univ. Agr. Exp. Sta. Memoir 155:1-12. (pc1) Bacdle, G.W. 1932. Genetics 17:415-431. (ms5 ma7 ms6 ms0 ms1 ms12 ms13 ms14 ral) Bacdle, G.W. 1932. Genetics 17:415-431. (ms5 ma7 ms6 ms0 ms1 ms12 ms13 ms14 ral) Bacdle, G.W. 1932. Genetics 17:415-431. (ms5 ma7 ms6 ms10 ms11 ms12 ms13 ms14 ral) Bacdle, G.W. and M.G. Neuffer. 1974. New Aritur, (vf21) Bacdre, G.W. and M.G. Neuffer. 1975. Num Aritur, (vf21) Bacdre, J.L. 1974. Proc. 29th Ams. Corn and Sorghum Res. Conf. pp. 118-133. (Hv1) Brewbaker, J.L. 1974. Proc. 29th Ams. Corn and Sorghum Res. Conf. pp. 118-133. (Hv1) Brewbaker, J.L. 1974. Proc. 29th Ams. Corn and Sorghum Res. Conf. pp. 118-133. (Hv1) Brewbaker, J.L. 1974. Mared. 26:42-325-32. (kg2) Brink, R.A. and J.S. Masae. 1941. J. Hered. 37:157-161. (kg1) Brown, M.L. and D.K. Buwerk. 1958. NUL 32:120-121. (kg2) Brown, A.A. and J.S. Sama. 1941. J. Hered. 37:157-161. (kg1) Brown, M.L. and D.K. Buwerk. 1958. NUL 32:120-121. (kg2) Brown, A.A. and J.S. Sama. 1941. J. Hered. 37:195-161. (kg1) Brown, G.A. 1955. MRL 32:136. (c1) Burnham, C.R. 1956. J. Amer. Soc. Agr. 23:966-975. (ga2) Burnham, C.R. 1956. J. Amer. Soc. Agr. 23:966-975. (ga2) Burnham, C.R. 1956. MRL 32:130. (ms1) Guard, S.K. and J.A. Breedman. 1957. (Ms1)-31-32. (pg1)) Guard, J.K. Matham, J.J. Genetics 07:13-32. (ga1) Burn Anderson, E.G. 1921. Cornell Univ. Agr. Exp. Sta. Memoir 48:533-554. (sml) Anderson, E.G. 1953. MNL 27:5. (bf2) Anderson, E.G. 1955. MNL 29:5. (g115) 2. 3. 4. 5. 11. 12. 13. 14. 15. 16. 18 . 19. 20. 21. 22. 23. 25. 26. 27. 28 . 29. 30. 31. 32. 33. 34. 35. 36. 37. 38 . 39. 40. 41. 43. 45. 46. 47. 48. 49. 50. 52. 53. 54 de la Roche, I.A., et al. 1971. Crop Science 11:8 56-859. (1n1)
Demerec, M. 1921. J. Hered. 12:406-407. (2bl)
Demerec, M. 1926. Amer. Nat. 60:172-176. (d3 v8 w11)
Demerec, M. 1926. J. Hered. 17:301-306. (pbl pb4)
Dempsey, E.D. 1965. J. Hered. 17:301-306. (pbl pb4)
Dempsey, E.D. 1965. Pp. 311-316 in M. Freeling, ed., Plant Genetics, Alan R. Liss, Inc., N.Y. (Ac2)
Doerschug, E.B. 1973. Theor. Appl. Genet. 43:182-189. (Dt4 Dt5)
Dollinger, E.J. 1987. MNL 58:209-210. (ora2)
Dollinger, E.J. 1987. MNL 51:103. (sft1)
Dooner, H.K. and J.L. Kermicle. 1971. Genetics 67:427-436. (I)
Doyle, G.G. 1978. MNL 51:103. (sft1)
Dovlek, D.N. 1965. Adv. Genet. 13:1-56. (Rf2)
East, E.M. and H.K. Hayes. 1911. Conn. Agr. Exp. Sta. Bull. 167. (C1 prl Rl)
Emerson, R.A. 1912. Amer. Breeders Assoc. Ann. Rept. 24:59-90. (Pl)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-399. (and d1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-399. (and d1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-399. (and d1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and d1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1912. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1913. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1913. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-309. (and l1 gl 1gl w1)
Emerson, R.A. 1914. Nebr. Agr. Exp. Sta. Ann. Rept. 25:80-105. (sl 1j v2)
Emerson, R.A. 1915. Cornell Univ. Agr. Exp. Sta. Memoir 16. (al)
Emerson, R.A. 1918. Cornell Un 55. 56. 57. 58 . 59. 61. 63. 64. 65. 66. 67. 68. 69. 70. 72. 73. 74. 75. Emerson, R.A. 1921. Amer. J. Bot. 5:411-424. (Bhl gs) Emerson, R.A. 1921. Cornell Univ. Agr. Exp. Sta. Memoir 39. (Bl Pll) Emerson, R.A. 1921. J. Hered. 12:267-270. (crl) Emerson, R.A. 1932. Sixth Int. Congress Genet. Proc. 1:141-152. (Ts5) Emerson, R.A. and S.H. Emerson. 1922. Genetics 7:203-236. (anl) 76. 77. 78. 79. 80. Emerson, R.A., et al. 1935. Cornell Univ. Agr. Exp. Sta. Memoir 180. Everett, H.L. 1949. Proc. Nat. Acad. Sci. 35:628-634. (cll Ciml) 81. (j2) Eyster, W.H. 1926. Science 64:22. (bml ygl) Eyster, W.H. 1929. Ztschr. ind. Abst. Vererburgs1. 49:105-130. (arl) 83. 84. Eyster, W.H. Eyster, W.H. 1931. Genetics 16:574-590. (vpl vp2) 1931. J. Hered. 22:99-102. (ms2 ms3) 85. Eyster, W.H. 1931. J. Hered. 22:99-102. (ms2 ms3)
Eyster, W.H. 1933. Amer. Nat. 67:75. (oy1)
Eyster, W.H. 1933. Amer. Nat. 67:75. (oy1)
Eyster, W.H. 1934. Bibliographia Genetica. 11:187-392. (dal 17 ms2 ms3 ms20 su2)
Ferguson, J.E., et al. 1978. J. Hered. 69:377-380. (se1)
Fraser, A.C. 1924. J. Hered. 15:119-123. (in1)
Fraser, A.C. 1933. J. Hered. 24:41-46. (s1)
Freeling, M. and J.C. Woodman. 1978. MNL 52:9-10. (Cdh1)
Friedemann, P. and P.A. Peterson. 1982. Mol. Gene. Genet. 187:19-29. (Uq)
Galinat, W.C. 1971. MNL 45:98-99. (is1)
Galinat, W.C. 1975. MNL 49:100-102. (Ph1 Ri1)
Galinat, W.C. and P.C. Mangelsdorf. 1957. MNL 31:67. (Pn1) 86. 87. 88. 90. 92. 94. 95. 96.

98. Galinat, W.C., et al. 1978. MNL 52:58. (bul) 99. Gavazzi, G., et al. 1975. Theor. Appl. Genet. 46:339-346. (prol) 100. Gavazzi, G., et al. 1986. Pp. 91-103 in G.M. Reddy and E.H. Coe, eds., Gene Structure and Function in Higher Plants, Oxford-IBH, New Delhi. (Sn1)
101. Gelinas, D.A., et al. 1966. Amer. J. Bot. 53:615. (Clt1)
102. Gernert, W.B. 1912. Amer. Nat. 46:616-622. (ra1)
103. Giesbrecht, J. 1965. J. Hered. 56:118, 130. (zn2)
104. Glover, D.V. 1968. MNL 42:151. (ct2 sr3)
105. Glover, D.V. 1968. MNL 42:151. (ct2 sr3)
106. Golubovskaya, I.N. 1979. Int. Rev. Cytol. 58:247-290. (ms28 ms43 meil)
107. Golubovskaya, I.N. and N.B. Khristolyubova. 1986. Pp. 723-738 in M. Freeling, ed., Plant Genetics, Alan R. Liss, N.Y. (dsy2 pam2)
108. Golubovskaya, I.N. and A.S. Mashnenkov. 1976. Genetika. 12:7-14. (dsy1)
109. Golubovskaya, I.N. and A.S. Mashnenkov. 1977. Genetika. 13:1910-1921. (pam1)
101. Golubovskaya, I.N., et al. 1975. Genetika. 11:11-17. (afd1)
111. Gonella, J.A. and P.A. Peterson. 1977. MNL 49:71-73. (gal0)
112. Gonella, J.A. and P.A. Peterson. 1977. Konetics 85:629-645. (Fcu)
113. Goodman, M.M. and C.W. Stuber. 1982. MNL 56:125. (Gdh2) (Snl) 111. Gonella, J.A. and P.A. Peterson. 1977. MNL 49:14-73. (gal0)
112. Gonella, J.A. and P.A. Peterson. 1977. Genetics 85:629-655. (Fcu)
113. Goodman, M.M. and C.W. Stuber. 1982. MNL 56:125. (Gdh2)
114. Goodman, M.M. and C.W. Stuber. 1983. Maydica 28:169-188. (Acpl Acp2)
115. Goodman, M.M., et al. 1980. Genetics 95:697-700. (Got2 Got3 Idh1 Idh2 Mel Pgd1 Pgd2 Fgm1 Pgm2 Phil)
116. Gracen, V.E., et al. 1979. Proc. 34th Ann. Corn and Sorghum Res. Conf. pp. 76-91. (Rf4)
117. Grogan, C.O., et al. 1963. Crop Sci. 3:451. (ats1)
118. Hamill, D.E. 1966. MNL 42:36-37. (Pxl)
119. Harberd, N., et al. 1987. MML61:23-24. (Mpl1)
120. Harovitz, S. 1948. MNL 22:42. (znl)
121. Harris, J.W. 1988. Genetics 60:186-187. (E4)
122. Hayes, H.K. and H.E. Brewbaker. 1928. Amer. Nat. 62:228-235. (gl2 gl3 sl1)
124. Hayes, H.K. and K.S. Chang. 1938. MNL 12:8. (zb6)
125. Hayes, H.K. and K.E. East. 1915. Conn. Agr. Exp. Sta. Bull. 188:1-31. (f11)
126. Hofmeyr, J.D.J. 1930. Unpub thesis, Cornell. (bal ba2)
127. Hoisington, D.A. 1983. MNL 57:159-160. (nec4)
128. Hoisington, D.A. 1985. MNL 61:48-49. (Les10)
130. Hooker, A.L. 1963. Crop Science 3:381-383. (Htl) Hoisington, D.A. 1987. MNL 61:48-49. (Les10) Hooker, A.L. 1963. Crop Science 3:381-383. (Ht1) Hooker, A.L. 1977. Crop Science 17:132-135. (Ht2) Hooker, A.L. 1981. MNL 55:87-88. (Ht3) Huelsen, W.A. and M.C. Gillis. 1929. Ill. Agr. Exp 130. 131. 132. 132. Hooker, A.L. 195., And M.C. Gillis, 1929. Ill. Agr. Exp. Sta. Bull. 500. (pr. 113).
133. Huelsen, W.A. and M.C. Gillis. 1929. Ill. Agr. Exp. Sta. Bull. 500. (pr. 114).
134. Hutchison, C.B. 1921. J. Hered. 12:76-83. (shl)
135. Hutchison, C.B. 1922. Cornell Univ. Agr. Exp. Sta. Memoir 60:1419-1473. (nal)
136. Jenkins, M.T. 1926. Amer. Nat. 60:484-488. (g2)
138. Jenkins, M.T. 1927. Genetics 12:492-518. (yg2)
139. Jenkins, M.T. 1930. J. Hered. 21:79-80. (rtl) Jenkins, M.T. 1927. Genetics 12:492-310. (yg2) Jenkins, M.T. 1930. J. Hered. 21:79-80. (rtl) Jenkins, M.T. 1932. J. Agr. Res. 44:495-502. (a2) Jenkins, M.T. 1947. MNL 21:33. (y8) Jenkins, M.T. and M.A. Bell. 1930. Genetics 15:253-282. (14) 141. Jenkins, M.T. and M.A. Bell. 1930. Genetics 15:253-282. (14)
 Jenkins, M.T. and F. Gerhardt. 1931. Lowa Agr. Exp. Sta. Res. Bull. 138:121-151. (1a1)
 Jachim, G. and C.R. Burnham. 1953. MNL 27:66. (sr2)
 Jones, D.F. 1925. J. Hered. 16:339-341. (sk1)
 Jones, D.F. 1951. Proc. Nat. Acad. Sci. 37:408-410. (Rf1)
 Jones, D.F. 1955. Empire J. Exp. Agr. 2125-1237. (cms-S cms-T)
 Josephson, L.M. 1955. Empire J. Exp. Agr. 23(89):1-10. (cms-S cms-T)
 Josephson, L.M. 1955. Empire J. Exp. Agr. 23(89):1-10. (cms-S cms-T)
 Josephson, J.H. 1920. J. Hered. 11:11-115. (br1)
 Kampton, J.H. 1921. J. Hered. 11:117-322. (ad1)
 Kempton, J.H. 1921. J. Hered. 11:317-322. (br1)
 Kempton, J.H. 1921. J. Hered. 25:29-32. (bd1)
 Kempton, J.H. 1921. J. Hered. 25:29-32. (bd1)
 Kermicle, J.L. 1969. Science 166:1422-1424. (ig1)
 Kermicle, J.L. and J.D. Axtell. 1981. Maydica 26:185-197. (1sr1)
 Khadzhinov, M.I. 1937. Bull. Appl. Bot. Gen. Pl. Breed. Ser. II. 7:247-258. (Rs1 rs2) 142. 157. Kernicle, J.L. 1969. Science 165:1422-1424. (1g1)
158. Kernicle, J.L. and J.D. Axtell. 1961. Maydica 26:185-197. (1sr1)
159. Khadzhinov, M.I. 1937. Bull. Appl. Bot. Gen. Pl. Breed. Ser. II, 7:247-258. (Rsl rs2)
160. Kvakan, P. 1924. Cornell Univ. Agr. Exp. Sta. Memoir 83:1-22. (Bnl gl1)
161. Kramer, H.H. 1957. NUL 31:120. (rgd1)
162. Kuc, J., et al. 1968. Phytochemistry 7:1435-1436. (bm3)
163. Kulkarni, C.G. 1927. Mich. Acad. Sci. Arts and Letters Papers. 6:253-273. (Wcl)
164. Lai, Y-K. and J.G. Scandallos. 1980. Devel. Genet. 1:311-324. (Adr1)
165. Lambert, R.J. and G.F. Sprague. 1987. MNL61:96. (mg1)
166. Largham, D.G. 1940. Genetica 25:88-107. (dd trl)
166. Largham, J.R. 1949. Proc. Nat. Acad. Sci. 35:167-178. (alpha beta)
167. Langham, J.R. 1949. Proc. Nat. Acad. Sci. 35:167-178. (alpha beta)
168. Laughnan, J.R. 1949. Proc. Nat. Acad. Sci. 35:167-178. (alpha beta)
169. Leng, E.R. and M.L. Vineyard. 1951. MNL 25:31-32. (br2)
171. Leto, K.J. 1982. Pp. 317-325 in W.F. Sheridan, ed., Maize for Biological Research, Plant Mol. Biol. Assoc., Charlottesville, VA. (hcf6 hcf12 hcf3 hcf3 hcf4 hcf3 hcf4 hcf4 hcf46)
172. Li, H.W. 1931. J. Hered. 22:14-16. (bv1)
173. Li, H.W. 1931. J. Hered. 24:279-281. (nal)
174. Lindstrom, E.W. 1918. Cornell Univ. Agr. Exp. Sta. Memoir 13:1-68. (11 w1)
175. Lindstrom, E.W. 1912. Genetics 6:91-110. (f1)
176. Lindstrom, E.W. 1924. Genetics 6:91-10. (f1)
177. Lindstrom, E.W. 1925. J. Hered. 10:135-140. (Tp1)
178. Lindstrom, E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Lindstrom, E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Lindstrom, E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Lindstrom E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Lindstrom E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Lindstrom E.W. 1925. J. Hered. 10:135-140. (Tp1)
179. Li Lindstrom, E.W. 1924. Genetics 9:305-326. (w2 w3) Lindstrom, E.W. 1925. J. Hered. 16:135-140. (Tp1) Lindstrom, E.W. 1935. Iowa St. Coll. J. Scl. 9:451-459. (a3 Og1) Lock, R.H. 1906. Roy. Bot. Gard. Annals 3:95-184. (P1) Longley, A.E. 1932. J. Agr. Res. 54:835-862. (K10) Lorenzoni, C., et al. 1974. MNL 48:19-20. (cp1) Lowe, J. and O.E. Nelson, Jr. 1946. Genetics 31:525-533. (mn1) Lysikov, V.N., et al. 1984. Sov. Genet. 20:72-80. (Cg2) MacDonald, T. and J.L. Brewbaker. 1974. J. Hered. 65:11-14. (Px2 Px3 Px4 Px5 Px6 Px7 Ta1) Mainw R.B. 1926. J. Hered. 17:313-325. (Bn1) 178 . 179. 180. 181. 182. 183. 184. 18 5. MacDonald, T. and J.L. Brewbaker. 1974. J. Hered. 65:37-42. (E5-I E5-II E6 E7 E8 E9 E10)
Mains, E.B. 1926. J Hered. 17:313-325. (Rpl)
Mains, E.B. 1931. J. Agr. Res. 43:419-430. (Rpl)
Mains, E.B. 1949. J. Hered. 40:21-24. (sh2)
Mangelsdorf, P.C. 1926. Conn. Agr. Exp. Sta. Bull. 279:509-614. (btl)
Magelsdorf, P.C. 1926. Conn. Agr. Exp. Sta. Bull. 279:509-614. (btl)
Mangelsdorf, P.C. 1947. Genetics 32:448-458. (dul)
Mascia, P.N. and D.S. Robertson. 1980. J. Hered. 71:19-24. (113 necl orol oro2 Orom1)
Mashenkov, A.S. and M.I. Khadjinov. 1979. Proc. IX Eucarpia Corn and Sorghum Sect. pp. 447-450. (Sup1)
Matthews, D.L., et al. 1986. Proc. Nat. Acad. Sci. 83:9099-9103. (Cas1)
McCarty, D.P., et al. 1986. Froc. Mat. Acad. Sci. 83:9099-9103. (NOR)
McClintock, B. 1934. Z. Zellforsch. Mikrosk. Anat. 21:294-328. (NOR)
McClintock, B. 1944. Genetics 29:478-502. (pyd1 wd1) 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196.

 McClintock, B. 1950. Proc. Nat. Acad. Sci. 36:344-355. (Ac Ds)
 McClintock, B. 1956. Brookhaven Symp. Biol. 8:58-74. (Spm)
 Melville, J.C. and J.G. Scandalios, J.G. 1972. Biochem. Genet. 7:15-31. (Enpl) Melville, J.C. and J.G. Scandalfos, J.G. 1972. Biochem. Genet. 7:15-31. (Enpl)
Micu, V. 1980. MNL 54:63-64. (dbl)
Micu, V. 1981. Genetical Studies of Maize. Shtiintsa, Kishinev, Mold. SSR (bsl dbl tll)
Micu, V. and S.I. Mustyatsa. 1978. Genetika. 14:365-368. (depl)
Miles, C.D. and D.J. Daniel. 1974. Pl. Phys. 53:589-595. (hcfl hcf2 hcf3)
Miles, D. 1982. Pp. 75-107 in M. Edelman, et al., eds., Methoda in Chloroplast Molecular Biology, Elsevier, Amsterdam. (hcf4 hcf13 hcf18 hcf1 hcf2 hcf3 hcf26 hcf34 hcf44 hcf40 hcf40 hcf40 hcf30
Miles, D., et al. 1986. Pp. 361-365 in K.K. Steinbeck, et al., eds., Molecular Biology of the Photosynthetic Apparatus, Cold Spring Harbor Laboratory. (hcf5 hcf28 hcf31 hcf36 hcf47 hcf48 hcf101 hcf316 hcf32 hcf26)
Miles, F.C. 1915. J. Genetics 4:193-214. (gal)
Miranda, L.T. de. 1980. MNL 54:15-18. (mall Ma12)
Miranda, L.T. de. 1980. MNL 54:19. (Asr1)
Miranda, L.T. de, et al. 1982. MNL 56:28-30. (Lte2)
Miranda, L.T. de, et al. 1982. MNL 56:30-32. (Mer Zer)
Miranda, L.T. de, et al. 1984. MNL 56:30-32. (Mer Zer) 201. 202 203. 204 205. 206. 207. 208. 209. 210. 211. 212. Miranda, L.T. de, et al. 1982. MNL 50:30-32. (Mer Zer, Miranda, L.T. de, et al. 1982. MNL 50:38-46. (Ger Fit Misra, P.S., et al. 1972. Science 176:1425-1427. (o7) Modena, S.A. 1983. MNL 57:38. (tpml) Modena, S.A. 1984. MNL 58:79-82. (Lcsl Lctl lct2) Modena, S.A. 1984. MNL 58:211-212. (Pdf.) Motto M. et al. 1983. Theore Anal. Compt. 64:41-46 (Ger Flt Krn) 213. 214. 215. 216. 217. Modena, S.A. 1984. MNL 38:211-212. (Pdf1) Motto, M., et al. 1983. Theor. Appl. Genet. 64:41-46. (w16 w17 wyg1) Muller, L.D., et al. 1971. Grop Sci. 11:413-415. (bm3) Mumm, W.J. 1929. Anat. Rec. 44:279. (h1) Nelson, O.E. 1976. MNL 50:114. (f13) Nelson, O.E. 1981. MNL 55:68. (o9 ol0 ol1 ol2 ol3) Nelson, O.E. 1981. MNL 55:73. (1p1) Nelson, O.E. and G.B. Clary. 1952. J. Hered. 43:205-210. (dv1 1o2) 218. 219. 220. 221. 222. Nelson, O.E. 1981. MNL 55:73. (1p1) Nelson, O.E. and G.B. Clary. 1952. J. Hered. 43:205-210. (dy1 1o2) Nelson, O.E. and A.J. Ohlrogge. 1957. Science 125:1200. (ctl rd1) Nelson, O.E. and S.N. Postlethwait. 1954. Amer. J. Bot. 41:739-748. (Pt1) Nelson, O.E. and A.J. Ullstrup. 1964. J. Hered. 55:194-199. (hm2) Nelson, O.E., et al. 1965. Science 150:1469-1470. (fi2) Neuffer, M.G. 1973. MNL 47:150. (nec3) Neuffer, M.G. and J.B. Beckett. 1967. MNL 61:50. (g119 g121 grt1 gs3 1j2 116 117 118 119 nec5 nec6 nec7 pg15 pg16 ppg1 py2 spc2 epc3 spt1 spt2 v24 v25 v26 v27 v28 v29 wgs1 wlu vlu2 wlu3 wlu4 wt2 zb7) Neuffer, M.G. and M. Calvert. 1975. J. Hered. 66:265-270. (Les1 Les2) Neuffer, M.G. and D. England. 1984. MNL 58:77-78. (Ctl) Neuffer, M.G. and D. England. 1984. MNL 58:77-78. (Ctl) Neuffer, M.G. and K.A. Sheridan. 1977. MNL 51:60. (Bif1 Rgd2 Spc1 Ysk1 Zb8) Neuffer, M.G. and W.F. Sheridan. 1980. Genetics 95:929-944. (dek1 dek2 dek3 dek4 dek5 dek6 dek7 dek8 dek9 dek10 dek11 dek12 dek13 dek14 dek15) 223. 224. 225. 226. 227. 2.28 . 229. 230. 231 232. 233. 234. 235. dek15) Neuffer, M.G. and W.F. Sheridan. 1980. MNL 55:29-30. (dekl dek2 dek3 dek4 dek5 dek6 dek7 dek8 dek9 dek10 dek11 dek12 dek13 dek14 dek15) Neuffer, M.G., et al. 1968. The mutants of maize. Crop Sci. Soc. Amer., Madison, Wisc. (cp2 ubl) Neuffer, M.G., et al. 1987. MNL 61:50-51. (G6 Ms41 Msc1 Msc2 Tirl Vsrl Wrk1 Zb8) 236. 237. 238. Newton, K.J. and D. Schwartz. 1980. Genetics 95:425-442. (Mdh1 Mdh2 Mdh3 Mdh4 Mdh5 mmm1) Nickerson, N.H. and E.E. Dale. 1955. Ann. Mo. Bot. Gard. 42:195-212. (Ts6) 239. 240. Nuffer, M.G. 1954. MNL 28:63-64. (hz2) Nuffer, M.G. 1955. Science 121:399-400. (Dt2 Dt3) 241. 242. Nuffer, M.G. 1955. Science 121:399-400. (Dt2 Dt3)
Nuffer, M.G. 1959. MNL 33:82. (Mr)
Ott, L. and J.G. Scandalios. 1978. Genetics 89:137-146. (Ampl Amp2 Amp3 Amp4)
Pally, A.F. and A.I. Rotar. 1979. Genetika 15:478-481. (cf12)
Palmer, R.G. 1971. Chromosoma 35:233-246. (aml)
Pawar, S.E. and C. Mouli. 1973. MNL 47:17. (Ce1)
Perry, H.S. 1939. MNL 13:7. (Lg3)
Perry, H.S. and C.F. Sprague. 1936. J. Amer. Soc. Agron. 28:990-996. (y3)
Peterson, P.A. 1950. Genetics 45:115-133. (En pg14)
Pfund. J.H. and C.W. Crum. 1977. Agron. Abst. p. 66. (Thcl) 243. 244. 245. 246. 247. 248 -249. 250. 251. Peterson, P.A. 1960. Genetics 45:115-133. (En pg14) Pfund, J.H. and C.W. Crum. 1977. Agron. Abst. p. 66. (Thcl) Phinney, B.O. 1956. Proc. Nat. Acad. Sci. 42:185-189. (D8) Phipps, I.F. 1928. J. Hered. 19:399-404. (ts4) Phipps, I.F. 1928. Cornell Univ. Agr. Exp. Sta. Memoir 125:1-63. (all vl2 vi3 v16 v17 v18) Piovarci A. 1982. MNL 56:157. (bv2) Plewa, M. 1979. MNL 53:93-96. (locl) Pogna, N.E., et al. 1982. MNL 56:153. (ys2) Postlethwait, S.N. and O.E. Nelson, Jr. 1957. Amer. J. Bot. 44:628-633. (wi1) Pryor, A.J. 1974. Heredity 32:397-401. (Gdh1) Pryor, T. and D. Schwartz. 1973. Genetics 75:75-92. (Cx1) Randolph, L.F. 1928. Amat. Rec. 41:102. (B chr) Rhoades, M.M. 1935. Amer. Nat. 69:74-75. (Dt1) Rhoades, M.M. 1936. MNL 22:9. (ga7) 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. Knoades, M.M. 1935. Amer. Nat. 69:74-75. (Dtl)
Rhoades, M.M. 1939. Genetics 24:62. (ws3)
Rhoades, M.M. 1948. MNL 22:9. (ga7)
Rhoades, M.M. 1951. Amer. Nat. 85:105-110. (pg11 pg12)
Rhoades, M.M. 1952. Amer. Nat. 85:105-106. (bz1)
Rhoades, M.M. 1956. MNL 30:38-42. (aml ell)
Rhoades, M.M. and E. Dempsey. 1954. MNL 26:58. (g117)
Rhoades, M.M. and E. Dempsey. 1952. MNL 56:21. (Mth)
Rhoades, M.M. and E. Dempsey. 1982. MNL 56:22. (Mut)
Robertson, D.S. 1955. Proc. Nat. Acad. Sci. 38:580-583.
Robertson, D.S. 1956. Genetics 40:745-760. (vg8 vp9)
Robertson, D.S. 1961. Genetics 40:745-760. (vg8 vp9) 263. 264. 265. 266-267. 268 . 269. 270. 271. 272. 273. (vp5) 1952. Proc. Nat. Acad. Sci. 35:35 1955. Genetics 40:745-760. (vpB v 1961. Genetics 46:649-662. (y10) 1967. MNL 47:82. (110) 1973. MNL 47:82. (110) 1974. MNL 48:70. (yd2) 274. Robertson, D.S. Robertson, D.S. Robertson, D.S. Robertson, D.S. Robertson, D.S. 275. 276. 277. 278. J. Hered. 66:127-130. (y9) Robertson, D.S. 1975. 279 Robertson, D.S. 1978. Mutat. Res. 51:21-28. (Mu) Robertson, D.S. 1984. MNL 55:115. (115) Robertson, D.S. 1984. MNL 55:115. (115) Robertson, D.S. 1984. MNL 55:115. (115) Sachan, J.K. and K.R. Sarkar. 1978. MNL 52:119-120. (rgol) Salamini, F., 1980. Cold Spr. Harb. Symp. 45:467-476. (Bg) Salamini, F., et al. 1983. Theor. Appl. Genet. 65:123-128. (Mcl) Saxena, K.M.S. and A.L. Hooker. 1966. Proc. Nat. Acad. Sci. 61:1300-1305. (Scandalios, J.G., et al. 1972. Arch. Biochem. Biophys. 153:695-705. (Cat2) Scandalios, J.G., et al. 1975. Biochem. Genet. 13:759-769. (Gotl) Scandalios, J.G., et al. 1980. Mol. Gen. Genet. 179:33-41. (Cat3) Scandalios, J.G., et al. 1980. Proc. Nat. Acad. Sci. 77:5360-5364. (Carl) Schwaltz, D. 1951. Genetics 36:676-696. (Ms21 Sks1) Schwartz, D. 1951. MNL 25:30. (ga@) Schwartz, D. 1960. Proc. Nat. Acad. Sci. 46:1210-1215. (E1) Schwartz, D. 1964. Froc. Nat. Acad. Sci. 51:602-605. (E3) 1978. Mutat. Res. 51:21-28. 280. Robertson, D.S. (Mu) 281. 282. 283. 284. 28 5. (Rp5) 286. 287. 288. 289. 290. 291. 292. 293. 294.

Schwartz, D. 1964. Proc. Nat. Acad. Sci. 51:602-605. (E3) 29 5.

Schwartz, D. 1965. Proc. XI Int. Genet. Corg. 2:131-135. (E2) Schwartz, D. 1966. Proc. Nat. Acad. Sct. 56:1431-1436. (AdA2) Schwartz, D. 1979. Mol. Gen. Genet. 174:232-241. (gen) Proc1) Schwartz, D. 1969. Proc. Ann. Corn Sorghum Res. Corf. 38:161-180. (Lfy1) Shaver, D. 1969. Proc. Ann. Corn Sorghum Res. Corf. 38:161-180. (Lfy1) Shaver, D. 1969. Proc. Ann. Corn Sorghum Res. Corf. 38:161-180. (Lfy1) Sherdam, W. 1969. Proc. Ann. Corn Sorghum Res. Corf. 38:161-180. (Lfy1) Sherdam, W. 1969. Proc. Ann. Corn Sorghum Res. Corf. 38:161-180. (Lfy1) Sherdam, W. 1969. Proc. 1967. Mol. Gene Genet. 180:266-271. (G10) Sherdam, W. 1969. Mol. 1969. Genetics 58:127-235. (L11) Shortwas, D. K., et al. 1969. Genetics 58:127-235. (L11) Shuraway, L. K. and L.F. Hawman. 1967. Genetics 53:133-80. (NCS1) Singleton, W.R. 1969. J. Hered. 37:61-64. (L11) Singleton, W.R. 1969. Shered: 53:133-53. (NCS1) Singleton, W.R. 1969. Corn Science 13:130-531. (chal) Sorgeton, W.R. 1969. MNL 33:3. (Crop Science 13:30-531. (chal) Sorgeton, G. K.H. 1978. Theor. Appl. Genet. 52:263-267. (2p) Sorver, C., et al. 1978. Theor. Appl. Genet. 52:263-267. (2p) Sorver, C., et al. 1976. J. Amer. Soc. Agron. 23:472-478. (psl) Sprague, G.F. 1930. J. Hered. 30:143-145. (Vgl) Sprague, G.F. 1935. J. Amer. Soc. Agron. 23:472-478. (psl) Sprague, G.F. 1936. J. Amer. Soc. 32:472-478. (vgl) Sprague, G.F. 1936. J. Amer. 1977. (Dt6) Sprague, G.F. 1937. ML 61:96. (Yl, Yl2) Sprague, G.F. 1937. ML 61:95. (KL 3gl20) Sprague, G.F. 1937. ML 61:95. (KL 3gl20) Sprague, G.F. 1937. ML 61:95. (KL 3gl20) Sprague, G.F. 1937. ML 61:95. (ML 3gl20) Sprague, G.F. 1937. ML 64:95. (ML 3gl 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321. 323. 324. 325. 326. 327. 328. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344 345. 346. 347. 348.

- 349.
- 350.

.....

14

.

...

the second second

÷.

÷.

٠

- 3

.

134

٩.

135

1 5

4 "3"

х

Ö

. ÷ . . .

1.8.11
- 78-w14 white	-wl white
1	-Idh2 isocitrate
1	-Mdh2 malate dehydrogenase

• .

.

39

.

140

1.01

•

....

if.

2.5

 $\mathcal{T}_{\mathcal{T}}$

144

1 A A

1.1

	- 91-113 luteus - 95-sr2 striate leaves	-K10 abnormal-10
	COMPILED BY DAVID A HOISINGTON UNIVERSITY OF HISSOURI FEBRUARY, 1987	

The Physical and Genetic Map of the Mitochondrial Genome from the Wf9-N Fertile Cytoplasm

The restriction data (18) representing the single circular species of approximately 570 kb are unchanged from the data in MNL 60. The origin for all coordinate data is taken as the first base of the <u>SetI</u> recognition site, which is nearly coincident with a <u>SmaI</u> site (13,18) in the 5270 bp repeat (repeat-1) adjacent to the Rl-homologous sequence. The major large repeated DNA sequence elements have been numbered in a clockwise direction and any future reference to the repeats will refer to the number rather than the size. Features such as the position of episome-related sequences, chloroplast-DNA related sequences and genes are given in the accompanying Figures and Tables.

Chloroplast-WAA related sequences and genes are given in the accompanying Figures and lables. In order to keep the map up to date, it would be appreciated if previously unidentified genes or other sequences could be sent directly to D. M. Lonsdale (Plant Breeding Institute), so that their position can be localised. The data base containing all this information is available upon request from: Tony P. Hodge or David M. Lonsdale, Department of Molecular Genetics, Plant Breeding Institute, Maris Lane, Trumpington, Cambridge CB2 2LQ.

Map data for repeated sequences or genes.

(A) Repeats			(B) Genes			(C) Defined Sequences						
Start	End	No.	Size	Reference	Start	End	Gene	Reference	Start	End	Sequence	Reference
566.07	2.69	1	5270bp	13	298.84	301.49	ATP 9	11	349,65	348.30	LS	19
245.67	250.94	1	5270bp	13	311.60	312.80	COB	9	329,50	328.01	ct 16S	28
6.96	7.96	2	lkb*		320.75	327.75	ND-1	2,8	468.44	472.54	ct 5S	4,17
495.90	496.90	2	lkb*		320.75	327.75	S13	2	2.50	8.85	R1	13,16,20
15.90	17.14	3	677bp	31	353.60	355.20	COX I	15	250.75	256.20	R2	13,16,20
536.42	537.66	3	677bp	31	398.42	401.97	265	7,27				
37.52	51.52	4	14kb*		417.83	417.96	55	5,27				
112.46	126.46	4	14kb*		418.07	420.04	185	6,27				
58.25	68.25	5	10kb*		427.89	450.69	COX III	30				
161.09	171.09	5	10kb*		454.21	452.68	ATP A-1	3,14				
452.03	464.20	6	12kb*		521.11	519.58	ATP A-2	3,14				
518.93	530.99	6	12kb*		537.70	539.32	COX II	12				
					556.74	561.04	ATP 6	10				

*Sizes estimated from restriction data.

tRNA Coding Sequences

<u>tRNA</u>	Code	Coordinates	Reference
tRNA ₁ Met	troM-1	37.52 - 38.30	25
tRNA 1 Asp	troD-1	38.30 - 39.26	26
ERNATYT	trn¥	92.73 - 103.05	22
tRNA 3 Met	trnM-3	105.4 - 108.6	24
tRNA2 Asp	trnD-2	124.72 - 125.68	26
tRNA ₂ Met	troM-2	125.68 - 126.46	25
tRNACys	traC	258.4 - 266.5	29
tRNAPhe	trnF	258.4 - 266.5	21
tRNASer	traS	258.4 - 266.5	29
tRNAfMet	trofM	308.9 - 320.7	24, 25

It cannot be assumed that these are functional genes. Omitted from this list are trnI, trnV and trnL (coordinates 327.4-336.6), which are known to be part (coordinates)27.4-3.507, which are known to be part of chloroplast sequences in the main genome (4,17,28). Also in this category are trnW and trnP, which are located on the 2.1/2.3 kb linear plasmid (1,23,29).

The above diagram is a circular representation of the data given in the accompanying tables. Repeats 1 to 6 (open boxes) and their relative orientation (arrows) are shown. The positions of known sequences (black boxes) including the 12 kb chloroplast sequence (hatched box) are labelled. The sequences flanking repeat-1 have been labelled α , β , R1 and R2 according to notation used previously (13).

References

- 1. Bedinger, P., E. L. de Hostos, P. Leon and V. Walbot, 1986. Cloning and characterization of a linear 2.3 kbp mitochondrial plasmid of maize. Submitted for publication.
- Bland, M. B., C. S. Levings, III and D. F. Matzinger, 1986. The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol. Gen. Genet. 204:8-16. Braun, C. J., and C. S. Levings, III, 1985. Nucleotide sequence of the Fl-ATPase alpha subunit gene from maize mitochondria of cmsT. Plant 2. 3.
- Physiol, 79:571-577. Braun, C. J., and C. S. Levings, III, 1986. DNA sequence homology between the maize mitochondrial and chloroplast genomes. MNL 60:111.
- Chao, S., R. R. Sederoff and C. S. Levings, III, 1983. Partial sequence analysis of the 5S to 18S rRNA gene region of the maize mitochondrial genome. Plant Physiol. 71:190-193. 5.
- 6. Chao, S., R. R. Sederoff and C. S. Levings, III, 1984. Nucleotide sequence and evolution of the 185 ribosomal RNA gene in maize mitochondria. Nucl. Acids Res. 12:6629-6644.
- Dale, R. M. K., N. Mendu, H. Ginsburg and J. C. Kridl, 1984. Sequence analysis of the maize mitochondrial 26S rRNA gene and flanking regions. Plasmid 11:141-150. 7.
- Dawson, A. J., T. P. Hodge, P. G. Isaac, C. J. Leaver and D. M. Lonsdale, 1986. Location of the genes for cytochrome oxidase subunits I and II, apocytochrome b, alpha-subunit of the Fl ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (Zea mays L.). Curr. Genet. 10:561-564.
- Dawson, A. J., V. P. Jones and C. J. Leaver, 1984. The apocytochrome b gene in maize mitochondria does not contain introns and is preceded by a potential ribosome binding site. EMBO J. 3:2107-2113. 9.
- Dewey, R. B., C. S. Levings, III and D. H. Timothy, 1985a. Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria. Plant Physiol. 79:914-919. 10.
- Dewey, R. E., A. M. Schuster, C. S. Levings, III and D. H. Timothy, 1985b. Nucleotide sequence of FO-ATPase proteolipid (subunit 9) gene of maize mitochondria. Proc. Natl. Acad. Sci. USA 82:1015-1019. Fox, T. D., and C. J. Leaver, 1981. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26:315-323. 11.
- 13.
- Houchins, J. P., H. Ginsburg, M. Rohrbaugh, R. M. K. Dale, C. L. Schardle, T. P. Hodge and D. M. Lonsdale, 1986. DNA sequence analysis of a 5.27-kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria. EMBO J. 5:2781-2788. Issac, P. G., A. Brennicke, S. M. Dunbar and C. J. Leaver, 1985. The mitochondrial genome of fertile maize (Zea mays L.) contains two copies of 14.
- 15.
- 16.
- 17.
- Isaac, P. G., A. Brennicke, S. M. Dunbar and C. J. Leaver, 1985. The mitochondrial genome of fertile maize (Zea mays L.) contains two copies of the gene encoding the alpha-subunit of the PI-ATPase. Curr. Genet. 10:321-328.
 Isaac, P. G., V. P. Jones and C. J. Leaver, 1985. The maize cytochrome coxidase subunit I gene: sequence, expression and rearrangement in cytoplasmic male sterile plants. EMBO J. 4:1617-1623.
 Levings, C. S., III, R. R. Sederoff, W. W. L. Hu and D. H. Timothy, 1983. Relationships among plasmid-like DNAs of the maize mitochondria. Pp. 363-371 in Structure and Function of Plant Genomes, O. Ciferri and L. Durc, eds., Plenum, NY.
 Lonsdale, D. M., 1985. Movement of genetic material between the chloroplasts and mitochondrion in higher plants, Vol 2. Pp. 51-60 in Plant Gene Research, B. Hohn and E. S. Dennis, eds., Springer-Verlag, Wein, NY.
 Lonsdale, D. M., T. P. Hodge and C. M.-R. Fauron, 1984. The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucl. Acids Res. 12 (24):9249-9261. 18.
- 19.
- of maize. Nucl. Acids Res. 12 (24):9249-9261. Lonsdale, D. M., T. P. Hodge, C. J. Howe and D. B. Stern, 1983. Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34:1007-1014. Lonsdale, D. M., R. D. Thompson and T. P. Hodge, 1981. The integrated forms of the S1 and S2 DNA elements of maize male-sterile mitochondrial DNA are flanked by a large repeated sequence. Nucl. Acids Res. 9:3657-3669. Marechal, L., P. Guillemaut, J.-M. Grienenberger, G. Jeannin and J.-H. Weil, 1985. Structure of bean mitochondrial tRNA^{Phe} and localization of the tRNA^{Phe} gene on the mitochondrial genomes of maize and wheat. FEBS Lett. 184:289-293. Marechal, L., P. Guillemaut and J.-H. Weil, 1985. Sequences of two bean mitochondria tRNA^S which differ in the level of post-transcriptional marechal, L., P. Guillemaut and J.-H. Weil, 1985. Sequences of two bean mitochondria tRNA^S which differ in the level of post-transcriptional 20.
- 21.
- 22. 23.
- 24.
- Marechal, L., P. Guillemaut, J.-M. Grienenberger, G. Jeannin and J.-H. Weil, 1985. Sequences and codon recognition of bean mitochondria and chloroplast tRNA#^{TP}: evidence for a high degree of homology. Nucl. Acids Res. 13:4411-4416. Marechal, L., P. Guillemaut, J.-M. Grienenberger, G. Jeannin and J.-H. Weil, 1985. Sequence sof initiator and elongator methionine tRNAs in bean mitochondria. Plant Mol. Biol. 7:245-233. 25.
- Parks, T. D., W. G. Dougherty, C. S. Levings, III and D. H. Timothy, 1984. Identification of two methionine transfer RNA genes in the maize mitochondrial genome. Plant Physiol. 76:1079-1082.
- Parks, T. D., W. G. Dougherty, C. S. Levings, III and D. H. Timothy, 1985. Identification of an aspartate transfer RNA gene in maize mitochondrial DNA. Curr. Genet. 9:517-519. 26. 27.
- Stern, D. B., T. A. Dyer and D. M. Lonsdale, 1982. Organization of the mitochondrial ribosomal RNA genes of maize. Nucl. Acids Res. 10 (11):3333-3340. 28.
- Stern, D. B., and D. M. Lonsdale, 1982. Mitochondrial and chloroplast genomes of maize have a 12 kb sequence in common. Nature (London) 229:698-702. 29.
- 30.
- Communicated by Dr. J.-M. Grienenberger, IBMC, Strasbourg. Communicated by Dr. W. Hauswirth, University of Florida. Isaac, P. G., C. J. Leaver and D. M. Lonsdale, unpublished data. 31.

VI. MAILING LIST

Abbott, Albert G., 338 Long Hall, Clemson University, Clemson, SC, 29634-1903
Agrawal, B. D., G. B. Pant Univ Agr Tech, Pantnagar 263145, India
Agrema, Hesham A., 42 Mumphis Street, Camp Caesar, Alexandria, Egypt
Ainsworth, Thomas C., Ainsworth Seed Company, Mason City, IL, 62664, 217-482-3281
Aken'Ova, M. E., Department of Agronomy, University of Ibadan, Ibadan, Nigeria
Albertsen, M. C., Pioneer HI-Bred Internatl, P. O. Box 38, Johnston, IA, 50131, 515-270-3648
Albertsen, M. C., Pioneer HI-Bred Internatl, P. O. Box 38, Johnston, IA, 50131, 515-270-3648
Albertsen, M. C., Dept Agron, S-110 Turner Hall, Univ Illinois, 1102 S. Goodwin, Urbana, IL, 61801, 217-333-4254
Al, S. Mahboob, Genetics & Flant Breed, College of Agriculture, Rajendranagar, Hyderabad-500 030, India
Alleman, M., Department of Genetics, University of Wisconsin, Madison, WI, 53706, 608-262-3286
Alten, Jim, Laboratory of Genetica, Estacion Exp de Aula Dei, Apartado 202, 50080 Zaragoza, Spain
Alvarez, Angel, Departamento de Genetica, Estacion Exp de Aula Dei, Apartado 202, 50080 Zaragoza, Spain
Alvarez, Angel, Departamento de Genetica, Betaville, MD, 20705, 301-344-3148
Anderson, E. L., Bidg 007, Rm 251, BARC-West, Beltsville, MD, 20705, 301-344-3148
Anderson, Jae, Room & Curtiss Hall, Department of Genetics, Iowa State University, Ames, IA, 50011, 515-294-0339
Andrew, R. H., Department of Agronomy, University of Wisconsin, Madison, WI, 53706, 608-262-2587
Arikoglu, Osman, Sakarya Zirai Arastirma Inst, P.K. 25, Adapazari, Turkey Andrew, R. H., Department of Agronomy, University of Wisconsin, Madison, WI, 53706, 608-262-2587 Artkoglu, Osman, Sakarya Zirai Arastirma Inst, P.K. 25, Adapazari, Turkey Arnstrong, Charles L., Agrigenetics Corporation, Advanced Research Division, 5649 E. Buckeye Road, Madison, WI, 53716, 608-221-5000 Arntzen, G. J., MSU-DOE Plant Res Lab, Michigan State Univ, East Lansing, MI, 48824, 517-353-2270 Aromose, O. S. A., Dept Biol Sci, Univ of Benin, Benin City, Nigeria Ashman, R. B., Dept of Botany, Purdue University, Lafayette, IN, 47907, 317-494-4634 Athma, Prasanna, Dept Plant Biol, 289 Morrill, University of Illinois, 505 S. Goodwin, Urbana, IL, 61801, 217-333-2919 Avila L., Gonzalo, Centro Eco-Genetico De, Pairumani, Casilla 128, Cochabamba, Bolivia Axtell, John D., Department of Agronomy, Purdue University, West Lafayette, IN, 47907, 317-494-8056 Ayala-Osuna, Juan, Univ Kxt Paul Julio Mesq F, Fac Med Vet Agron, 14870 Jaboticabal SP, Brazil, 0163-220260 Ayeock, Harold S., Dairyland Renearch Internatl, Route #1, Box 51, Clinton, WI, 53525, 608-676-2237 Ayers, J. E., Dept Plant Pathology, 211 Buckhout Lab, Pennsylvania State Univ, University Park, FA, 16802, 814-865-7776 Baenziger, P. Stephen, Department of Agronomy University of Nebraska, Lincoln, NE, 63583-0915 <code-block><code-block><code-block></code></code></code>

Browne, C., Curtis Hall, University of Missouri, Columbia, MO, 65211, 314-882-2674
Budyanto, Tumin, D/A P. Kuru, Pegawai Stasiun, Banyuwangi, Jawa Timur, Indonesia
Buescher, Pat, Custom Farm Seed, Box 160, Monence, IL, 60954, 815-472-2433
Burgess, Diane, Advanced Genetic Sciences, 6701 San Pablo Avenue, Oakland, CA, 94608, 415-547-2395
Burmond, T., Research, Jacques Seed Company, Prescott, MI, 54022, 715-262-2233
Burnham, G. R., Agtonomy & Plant Genetics, University of Minnesota, St. Paul, NN, 55108, 612-644-7797
Burrn, Benjamin, Biology Dept, Brookhaven National Lab, Upton, NY, 11973, 516-282-3316
Bussard, James B., Curtis Hall, University of Misouri, Columbia, MO, 65211, 314-882-3410
Cabulea, I., Plant Breeding Laboratory, Str Agriculturii Nr 27 Jud, Clui, Turda, Romania
Callis, Judith, Dept Biol, Stanford Univ, Stanford, CA, 94305, 415-497-2609
Camara-Hernandez, J., Altolaguirre 1295, Buenos Aires 1427, Argentina, Sl-6464
Cameron, Johns E., Allelix, 6850 Goreawy Drive, Missisaaug L4V 1P1, Ont., Canada, 416-677-0831
Carlson, John E., Allelix, 6850 Goreawy Drive, Missisaaug L4V 1P1, Ont., Canada, 416-677-0831
Carlson, John L., Dept Biol Sti, University of Calicinnati, Gut, 52210, 319-353-5245
Caruso, John L., Dept Biol Sti, University of Giova, Jowa City, IA, 53240, 319-353-5245
Carsuso, John L., Dept Biol Sci, University of Giolenart, Canada, Ni, 63130, 314-889-6813
Catcheside, D. G., Waite Agr Res Inst, Glen Osmond Sofé S, Australia, 08-7901 EXT 389
Chandler, Vicki, Department of Biology, Mashington University, St. Jouis, MO, 63130, 314-889-6813
Catcheside, D. G., Wult Kay Sea, Univ Mass, 240 Beaver Street, Waltham, MA, 02154, 617-891-0650 EXT 67
Chang, Ming-Tang, Garst Seed Company, Highway 210, P.O. Box 500, Slater, IA, 50244, 515-683-3574
Chandrayadana, F., Sub Kxy Sta, Univ Mass, 240 Beaver Street, Waltham, MA, 02154, Chao, Chaow-Ying, Tangkai University, 80 NJ, Taichurg, Triven
 Chao, Li, S., Charler For Laborations & Jack, NS Weilth Spir, Boyte T, Taita, Alarye, TY, 1220, 198-473-7333
 Chane, B., Cristie F, M. Hant Fethol Beyr, Univ of Florida, Galassville, TV, 2011, 964-393-011
 Chane, David, J., Markain K. Horr, Sill Hanker His, Classaville, TV, 2011, 964-393-011
 Chane, David, J., Markain K. Horr, Sill Hanker His, Classaville, TV, 2011, 964-393-011
 Chan, Charlong, S. Mulford, Wurf Gill, Farkersky, G., 8970, Ol. 145-682-000
 Chao, Teorgi, S. Mulford, Wurf Gill, Farkersky, G., 8970, Ol. 145-682-001
 Chao, Teorgi, S. Mulford, Wurf Gill, Farkersky, G., 8970, Ol. 145-682-001
 Chao, Teorgi, S. K., Gill Gescher, S., Bagner Schwart, S. K. 1019, S. 104-207-003
 Chao, Teorgi, S. K., Gill Gescher, S., Bagner Schwart, C. 19, Taitore, Travin, Sill Alles, C., 94304, 413-856-3200
 Chang, Fargi, A. C., Classavi, S., Bagner Schwart, C. 19, Taitore, TV, 1127, Sill-507-5483
 Chao, Taitor, S. K., Clail Gescher, S., Bagner Schwart, C. 19, Taitore, TV, 1127, Sill-507-5484
 Chao, Taitor, S. & Kang, T. S. Kang, C. 1990, Sill-201-2060
 Charge, J. C., 10, Senstrik, S. & Sill, Sill-201-2060
 Charge, J. H., Clail Schwart, S. & Sill, Sill-201-2060
 Charge, J. H., Clail Schwart, S. & Sill, Sill-231-240-24630
 Charge, J. H., Clail Schwart, S. & Sill, Sill-233, University Fastion, Burlersky, T. (1994, Sill-960-100)
 Charge, J. H., Clail Schwart, K. & Sill, Sill, Sill, Sill, Sill-231-2400
 Charge, J. H., Clail Schwart, Sill Sill, Sill, Sill, Sill, Sill-231-2460
 Charge, J. H., Dept Kar, K. K. & Sill, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Sill-237-4810
 Charge, J. H., Dept Kar, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Silll, Sill, Sill, Sill, Sill, Sill, Sill, Sill, Silll, Sill, Si

Dolfini, Silvana Faccio, Deipartimento di Genetica, University of Milano, Via Celoría, 26, 20133 Milano, Italy Dollinger, E. J., Ohio Agric Res & Devel Center, Wooster, OH, 44691, 216-263-3893 Dooner, Hugo K., Advanced Genetic Sciences Inc. 6701 San Pablo Avenue, Oakland, CA, 94608, 415-547-2395 Doring, H.-P., Inst Genetik, Univ Koln, D-5000 Koln 41, Weyertal 121, W Germany, 0221-4702465 Dowling, Edward J., C/O Jacques Seed Co, P.O. Box 370, Lincoln, IL, 62656, 217-735-2770 Doyle, G. G., Curtis Hall, University of Missouri, Columbia, MO, 65211, 314-882-8215 Drolsom, Paul, Department of Agronomy, University of Wisconsin, Madison, WI, 53706, 608-262-0876 Duclos, Zachary M., Rt 3, Box 132, Leesburg, GA, 31763, 912-759-2161 Duke, Stephen O., S W S L, P.O. Box 225, Stoneville, MS, 38776 Dumanovic, Janko, Maize Res Inst, P.O. Box 89, 11081 Zemun, Yugoslavia Duncan, Dave, Dept Agron, S-332 Turner Hall, University of Ilinois, 1102 S. Goodwin, Urbana, IL, 61801, 217-333-9465 Dunloy, Joan, Plant Sciences Dept, Univ of Western Ontario, London, Ontario N6A 527, Canada Dunn, G. M., Plant Sciences Ht.-Bred Internat, 400 Locust Street, 700 Capitol Square, Dee Moines, IA, 50309, 515-245-3591 Duvick, Jonathan P., Pioneer Hi-Bred Internat, University, 516 Bradfield, Ithaca, NY, 14853, 607-256-3102 Eastin, John A., Box 389, Grant, NE, 69140, 308-352-4819 Eberhart, Steve, Funk's Seed International, 1300 West Washington, Bloomington, IL, 61701, 309-829-9461 Echt, Craig, Plant Pathology Department, Forbes Hall, University of Arizona, Tucson, AZ, 85721, 602-621-5490 Eichholtz, David A., Monsanto, AA3E, 700 Chesterfield Village Kwy, St. Louis, MO, 69198, 314-537-6227 Ela-Ard, Raghad Shiekh, Malik-Abdul Monem, Regad St Build 77 *H*7, Damascues, Syria Empig, L. T., U.S.A.I.D./NCRE, Yaounde, Cameroon Functo, I. T., Son Mano, Acae, Cameroon El-Ard, Raghad Shieht, Malic-Abdal Homes, Kegad St Mill 17 /7, Lamaceus, Syria Equig. L. 7, 15.A. 12.7, MCRE, Yaoude, Gaseroon Homo, Torn, National Int of Genetics, Misfam 411, Japan, 0399-75-071 EXT 319
England, Ban, Ortis Hall, Unir of Hissenti, Mon (5211, 314-882-7818
Esen, Asim, Dept Biology, Ya Polytech Inat & State Univ, Blackaburg, Ya, 24061, 703-961-5894
Eubanks, Mary, Departement of General Biology, Vanderbilt University, Nashviller, Ri, 37235, 615-322-7311
Everett, Herbert L., Cornell University, 222 Baerson Hall, Ithecs, NY, 14833, 607-236-3103
Evola, S. V., Clah-GEUT Oropration, P. Yo, Box 1227, Nashviller, Ri, 37235, 615-322-7311
Everett, Herbert L., Cornell University, 20 Research Triangle Yasi, MG, 27709-2257, 919-549-8164
Probasis, Mary, Olaw-GEUT Oropration, P. Yo, Box 1227, Nashviller, Ri, 37235, 615-322-7311
Everett, Herbert L., Cornell University of North Bakota, Box 2010
Parish, Guy, Departement of Biology, University of North Bakota, Box 2010
Parish, C., Departente of Biology, University of North Bakota, Box 2010-1847-1144
Peirs, G., Tunitur University of Utah, 743 Wintrobe Building, Salt Lake City, UT, 84132, 201-881-817
Pedoroff, Mina, Carnegie Indogie III, Ghatory, Freiburg, Wormany, 0761-2032724
Perix, G., Tunitur University of Northway, Baltisone, MG, 2010, 201-867-1414
Peter, Beit, N. J., Dept of Biology, Huitersity of Toronto, 359 Mistamesuaga Road, Missiesauga, Ontario, Canada, 416-828-5326
Pisoni, Richard, IRXI, 830 Branaten Road, San Carlos, CA, 94070, 415-595-5335
Pisoni, Richard, IRXI, 830 Branaten Road, San Carlos, CA, 94070, 415-595-5335
Pisoni, Richard, Dien, Yang Dayang Dapatematic, Giology, Mistamakang, Missiesauga, Ontario, Canada, 416-828-5326
Pisoni, Richard, IRMIT, Londres 40, Apdo Postal 6-641, 06600 Mexico, D.F., Maxico
Pison, G., Ayenony Departement of Generica, Boto San By Ulianasauga, Boad, Hiessiesauga, Ontario, Canada, 416-828-5 Empig, L. T., U.S.A.I.D./NCRE, Yaounde, Cameroon Empig, L. T., San Miguel Corp Box 271, 6766 Ayala Avenue, Makati, Rizal, Manila, Philippines Endo, Toru, National Inst of Genetics, Misima 411, Japan, 0559-75-0771 EXT 319 Gey, Philippe, CIBA-GEIGY Ltd, Agricultural Division, CH-4002 Basle, Switzerland, 061-37-44-57 Geadelmann, J. L., Dept Agron & P1 Gen, Univ of Minnesota, St Paul, MN, 55108, 612-373-0872 Gebauer, Juan E., Corn Breeding, Casilla 190, Buin, Chile, 552 Buin Gebauer, Juan E., Corn Breeding, Casilla 190, Buin, Chile, 552 Buin Gebauer, Juan E., Corn Breeding, Casilla 190, Buin, Chile, 552 Buin Geerthsen, J. M. P., Dept of Genetics, University of Pretoria, Pretoria 0181, S Africa, 012-436381 Geiger, Hartwig H., Univ Hohenheim, Inst Pflanzenzucht, Postfach 700562(350), D-7000 Stuttgart 70, W Germany Geerthsen, J. M. P., Dept of Genetics, University of Pretoria, Pretoria (18), S Africa, 012-436381
Geiger, Hartwig H., Univ Hohenheim, Inst Pflanzenzucht, Posffach 70055(2350), D-7000 Stutigart 70, W Germany
Geng, Qing-Han, Dept of Agronomy, Inner Mongolia Agric College, Inner Mongolia Aut Reg, China
Georglew, Trifon, Technical University, "A. Kanchev", Rousse 7004, Bulgaria, 082-23469
Gerats, Tom, Department of Genetics, Free University, De Boelelaan 1087, 106 MV Amsterdam, Nederland, 020-68-05-51
Gerrish, Everett E., Box 774, Grinnell, IA, 50112, 515-236-4911
Ghidoni, Achille, Istituto di Genetica, University, De Boelelaan 1087, 106 MV Amsterdam, Nederland, 020-68-05-51
Gerrish, Everett E., Box 774, Grinnell, IA, 50112, 515-236-4911
Ghidoni, Achille, Istituto di Genetica, University, De Boelelaan 1087, 106 MV Amsterdam, Nederland, 020-68-05-51
Gertish, Everett E., Box 774, Grinnell, IA, 50112, 515-236-4911
Ghidoni, Achille, Istituto di Genetica, University de Milano, Via Celoria 26, Milan 20133, Italy, 02-230823
Ghobrial, Helmy K., 4100 Valentine Creet Rd, St. Paul, MN, 55112
Ghosh, P., Dept of Botany, Kalyani Univ, Kalyani, Nadia, W Bengal, India, 220/ext 9
Gilesbrecht, John, Res Sta Canada Agr, P.O. Box 3001, Morden, Manttoba, Canada, 822-4471
Gillorer, David V., Dept of Agronomy, Purdue University, Lafayette, IN, 47907, 317-494-8067
Goertzen, Kenneth L., Goertzen Seed Res Inc, R R 2 Box 48, Scott City, KS, 67871, 316-872-2807
Golubowkaya, I. N., Inat Genet & Cytol, Siberlan Branch Akad Sc1, Novosibirsk, USSR
Gonella, Jaime, CIBA-CEIGY, 26020 Casalmorano (CR), Italy, 0374-74144
Godd, Ronald L., Funk Seeds International, PO Box 417, Bluffton, IN, 47614, 219-824-5056
Goodan, Major M., Department of Toop Sciences, North Carolina State Univ, P.O. Box 7620, Raleigh, NC, 27695, 919-737-2704
Gordon, P. N., Department of Stology,

Kaan, F., INRA ENSA, Place Viala 34060, Montpellier Cedex, France, 67-63-43-20 Kahler, A. L., Garst Seed Company, Highway 210, P.O. Box 500, Slater, IA, 50244, 515-685-3574 Kalia, V., Regional Research Station, Dhaulakuan-173001, Distt Sirmur (H. P.), India Kaltsikes, P. J., Dept Plant Breed & Biometry, Athens School of Agr Sci, Iera Odos 75, Athens T.T.301, Greece, 347-1504 Kamimura, Shoji, Kunisada Plant Breed Stn, 1211 Ichiba, Akabori-mura, Sawa-gun, Gunma-ken 379-22, Japan Kaneko, Koji, National Agr Res Center, Yatabe-Cho, Tsukuba-Gun, Ibaraki-Ken 305, Japan Kaneko, Tatsuco, Snow Brand Seed Co, Hokkaido Research Station, Horonai, Naganuma-cho, Hokkaido 069-14, Japan Kaneko, Tatsuco, Snow Brand Leuteines State Diversity Fater Peure 14, 70083, 506/3882-2110 Kaneko, Koji, National Agr Res Center, Yatabe-Cho, Tsukuba-Gun, Ibaraki-Ken 305, Japan
Kaneko, Tatsuo, Snow Brand Seed Co, Hokkaido Research Station, Horonal, Naganuma-cho, Hokkaido 069-14, Japan
Kaneko, Tatsuo, Snow Brand Seed Co, Hokkaido Research Station, Horonal, Naganuma-cho, Hokkaido 069-14, Japan
Kang, M. S., Department of Agronomy, Louisiana State University, Baton Rouge, LA, 70803, 504-388-2110
Kannenberg, L. M., Dept of Crop Science, University of Guelph, Ontario NiG 2W1, Canada, 519-824-4120 EXT 2506
Karazawa, Missae, Department of Agronomy, Room 20, Iowa State University, Ames, IA, 50010, 515-294-5076
Karpoff, A. J., Dept of Biology, Univ of Louisville, Louisville, KY, 40208, 502-588-6771
Kasha, K. J., Dept of Crop Science, Univ of Guelph, Ontario NIC 2W1, Canada, 824-4120 EXT 2507
Kato Y., T. A., Centro de Genetica, Colegio de Postgraduados, Chapingo 56230, Mexico, (5)5-85-07-28
Keil, R. L., Yale U/Biology Dpt/PO Box 6666, Kline Biol Tower Rm 812, New Haven, CT, 06511, 203-436-2266
Keim, Kent, R., Plant & Soil Sci Dept, Texas Tech University, Lubbock, TX, 79409
Keller, Patrick, Biochemistry Dept, Univ of Rhode Island, Kingston, RI, 02881, 401-295-0298
Kelley, Phil, Dept Microbiol & Immunol, 6643 Medical Sci Bldg II, University of Michigan, Ann Arbor, MI, 48109, 313-763-3531
Kemnell, Jack, Department of Plant Pathology, Fifield Hall, University of Florida, Gainesville, FL, 32611, 904-392-3639
Kernicle, Jerry, Dept of Genetics, University of Wisconsin, Madison, WI, 53706, 608-262-1253
Kery, E. A., Stokes Seeds Limited, 39 James Street, P.O. Box 10, St. Catharines, Ontario L2R 6R6, Canada, 416-688-4300
Keyes, Carol A. Lemke, Campus Box 1137, Washington University, St. Louis, MO, 63130
Kharkin, Emil E., All-Russian Res Inst Chem Agr, Nemchinovka, Moscow, USSR
Khehra, A. S., Punjab Agr University, Department of Plant Breeding, Ludhiana Winykin, Badi Le, All-Lamarian Kao Lowi, Chem Agr, Naminizovka, March 1988.
 Wordberg, A. S., Mujha Agr, Duivresity, Department of Flant Steeleng, Ludkinas, India
 Kim, Sang, University, Department of Plant Science, University of Roode Liand, Kingston, RI, 02881, 401-792-2529
 Kim, Naw Song, University, Department of Plant Science, AdS Benry Mell, Madlano, NI, 53706, 608-262-3287
 Kim, Son Kaon, Internatl Inst Tropical Agr, FMS 5320, Ibadan, Nigeria, 413244
 Kim, A. K. Ourtis Hall, Univ of Missouri, Columbia, MO, 65211, 314-882-2674
 King, Farticki S., Friedrich Hisscher-Tank, Fostfach 2343, CG+402 Basel, Soitzerland, 61-375583
 King, Farticki S., Friedrich Hisscher-Tank, Fostfach 2343, CG+402 Basel, Soitzerland, 61-375583
 King, Karicki S., Friedrich Hisscher-Tank, Fostfach 2343, CG+402 Basel, Soitzerland, 61-375583
 Kins, Carlton, Northury K.M. Bissenens, J. Marene Gollinel, 4930 Ler Ponts de C, France, (41) 66381
 Kies, Anarles, Northury King Semense, J. Marene Gollinel, 4930 Ler Ponts de C, France, (41) 66381
 Kies, Anarles, Northury King Semense, J. Marene Golling Life Science Bidg, University of New Hamsphire, Durham, NR, 03824, 603-862-2473
 Konstantinov, Kosam, Anice Research Institute, F.O. Dox 89, 1081 Basam, Yugoslavia
 Konzak, Galvin F., Oppt of Agrenomy & Kolls, Kawhington State Univ, Fullman, WA, 99164-6420, 509-335-3635
 Kovae, Isevu, Agriculture Research Institut, Noraal, HL, 61761, 309-432-430 Bari 1534
 Kratovini, D. &, Sokota Mishof Kondusen, Suposlavia
 Kratovini, D. &, Sokota Mishof Kondusen, Suposlavia
 Kratovini, D. &, Sokota Mishof Kondusen, Stocka Matonwan, Kingster, N, 47907
 Kushen, Adelbeid, Dept Flant Breed & Blometry, 132 Earston Kall, Cornell University, Kasyato, 104, 94-806
 Kuaar, D., Dy Flant Steed & Borestyn, Y. 200 Kasyato, Cornel Jasyato, Levise, E. V., Inst Cytol Genetics, Novosibirsk, USSR Levis, Herman, Div of Phys, Cell & Mol Biol, National Science Foundation, Washington, DC, 20550, 202-357-7647 Lewis, Herman, Div of Phys, Cell & Mol Biol, National Science Foundation, Washington, DC, 20550, Li, Ching Hsiung, Chinese Acad Agric Sci, Department of Crop Science, Beijing, China Li, H. W., Institute of Botany, Academia Sinica, Taipei, Taiwan Li, Jigeng, Institute of Genetics, Academia Sinica, Beijing, China Liang, George H., Dept of Agronomy, Kansas State University, Manhattan, KS, 66502, 913-532-7255 Lin, Borryaw, Genetics Institute, 87 Cambridge Park Drive, Cambridge, MA, 02140, 617-876-1170 Lin, Chi C., Lilly Research Lab, Box 708, Greenfield, IN, 46140 Lin, Ji-Zhou, Institute of Crops, Shanxi Acad Agric Sci, Shanxi Province, China Lindsey, M. F., Dekalb-Ffizer Genetics, Box 408, Dayton, IA, 50530, 515-547-2550 Liu, Edwin H., Savannah River Ecology Lab, P.O. Drawer E, Aiken, SC, 29801, 803-725-2472 Liu, Edwin H., Savannah River Ecology Lab, P.O. Drawer E, Aiken, SC, 29801, 803-725-2472 Liu, Edwin H., Savannah River Ecology Lab, P.O. Drawer E, Alken, SC, 29801, 803-725-2472 Liu, Enxun, Dept of Agronomy, Laiyang Agric College, Laiyang, Shandong, China Liu, Jilin, Dept of Agronomy, Huazhung Agric College, Wuhan, Hubei Province, China Loeffel, F. A., NAPB Res. Center, Rural Route #2, Brookscon, IN, 47923, 317-563-3111 Lonsdale, D. M., Plant Breeding Institute, Maris Lane, Trumpington, Cambridge CB2 2LQ, England Lorenzoni, C., Istituto di Genetica Vegetale, Universita Cattolica, 29100 Piacenza, Italy Lorenzoni, C., Istituto di Genetica Vegetale, Universita Cattolica, 29100 Piacenza, Italy Lorz, Norst, Max-Planck-Institut Fur, Zuchtungsforschung, D5000 Koln 30, W Germany Lower, W., 235 Environ Trace Ctr, Univ of Missouri, Columbia, MO, 65211, 314-445-8595 Lu, Yingtang, Dept Plant Molec Physiol, University of Hawaii, 3190 Maile Way, Honolulu, HA, 96822, 808-948-8384 Ludwig, Steven, Department of Botany, University of Georgia, Athens, GA, 30602 Lynn, Melanie, Dept Botany & Plant Path, Purdue University, W. Lafayette, IN, 47906, 317-494-8787 Ma, Te-Hsiu, Dept Biol Sciences, Western Illinois University, Macomb, IL, 61455, 309-298-1457 Ma, Te-Hsiu, Dept Biol Sciences, Western Illinois University, Macomb, IL, 61455, 309-298-1457 Ma, Tu, Agrigenetics, 5649 East Buckeye Road, Madison, WI, 53716, 608-221-5000 Maggini, Fabio, Ist di Biologia Agraria, Cattedra di Botanica, Via Riello, OllOU Viterbo, Italy Magoja, J. L., Inst Fitotec Santa Catalina, Llavallol, Argentina, 243-0233 Maguire, Marjorie, Zoology Department, University of Texas, Austin, TX, 78712, 512-471-7451 Maheshwari, J. K., National Botanical Res Inst, Lucknow-226001, India Majeste, A, Coop Agric Cerealee, Ave Gaston Phoebus, 64230 Lescar, France, 59-328446 Majeste, A. Coop Agric Cereales, Ave Gaston Phoebus, 64230 Lescar, France, 59-328446 Majeste, A. Coop Agric Cereales, Ave Gaston Phoebus, 64230 Lescar, France, 59-328446 Malotesky, S. I., Tereshkova St, House 6, Flat 49, Novosibirsk 630090, USSR Malone, Carl, 205 McKinley Avenue, Milford, IL, 60953, 815-889-4079 Maloney, Alan, Biol Sci Dept, Stanford Univ, Stanford, CA, 94305, 415-497-2609 Mangelsdorf, P. C., Apt. 1200, Carol Woods, Chapel Hill, NC, 27514, 919-942-4396

Manrique, Antonio, Univ Agraria Progr, Coop, Inv Maiz, La Molina, Apt 456 Lima, Peru, 312746 Mans, Rusty J., Dept of Biochem/J245 JHMHC, Univ of Florida, Gainesville, FL, 32610, 904-392-2332 Manzocchi, Lucia A., Consiglio Nazionale Richerche, Istituto Biosintesi Vegetali, Via Bassini 15, 20133 Milano Mapping file, Curtis Hall, University of Missouri, Columbia, MO, 65211 Marchand, J. L., IKAT, Ligne Paradis, 97610 St. Pierre, Reunion Martlani, Giuseppe, Iat Sper Cerealicoltura, Via Cassia 176, Roma 00191, Italy Martka, Michael D., Zoecon Corporation, 975 California Avenue, Palo Alto, CA, 94304, 408-996-9134 Martin, I. F., Research Station, PO Box 27, Kairi, Q 4872, Australia Martin, I. F., Research Station, PO Box 27, Kairi, Q 4872, Australia Martin Sanchez, J. A., Esc T Sup Ingenieros Agron, Carretera de Huesca Km 3, Lerida, Spain, 973-233841 Martineau, Belinda, Department of Genetics, 345 Mulford Hall, University of California, Berkeley, CA, 94720, 415-642-7948 Marton, Csaba Lajos, 2462 Martonvasar, P.o.B. 19, Hungary, 26-45774 Mascarenhas, Joseph P., Department of Biol Sci, State University of New York, Albany, NY, 12222, 518-457-3300 Mascia, P., Monsanto, GG4I, 700 Chesterfield Village Pkwy, St. Louis, MO, 63198, 314-537-6683 Mashnekov, A. S., Krasnodar Res Inst Agric, Krasnodar, USSR Mascarenhas, Joseph P., Department of Biol Sci, State University of New York, Albany, NY, 12222, 518-457-3300 Mascia, P., Monsanto, GG4I, 700 Chesterfield Village Pkwy, St. Louis, NO, 63198, 314-537-6683 Mashnenkov, A. S., Krasnodar Res Inst Agric, Kresnodar, USSR Masterson, Robert, Genetics Department, & Curtiss Hall, Iowa State University, Ames, IA, 50010, 515-292-3984 Mathur, D. S., 126, NRL, Indian Agr Res Inst, New Delhi, India Matthur, D. S., 126, NRL, Indian Agr Res Inst, New Delhi, India Maunder, A. Bruce, Dekalb-Pfizer Genetics, Route 2, Lubbock, TX, 79415, 806-763-3336 Masoci, Luis B., C. Croce 145, 1832 Lomas de Zamora, Argentina McBride, A. C., Phytotech, 624 South 775 R, Lafayeter, IN, 47905, 317-296-3497 McGarty, Donald R., Vagetable Crops Department, 1255 Fifield Hall, University of Florida, Gaineeville, FL, 32611, 904-392-1794 McClain, Eugene F., Dept Agronomy & Solis, Clemsón University, Clemson, SC, 2963A-0359, 803-656-3102 McClain, Sola, N., F.O. Box 156, Ag. Alumni Seed Imp, Asan, Romeny, IN, 47981, 317-538-3145 McClainteck, Sheila, USDA-AKS-FGCR, 800 Buchanan Street, Albany, CA, 94710, 415-466-3804 McCornick, Sheila, USDA-AKS-FGCR, 800 Buchanan Street, Albany, CA, 94710, 415-466-3804 McCornick, Sheila, USDA-AKS-FGCR, 800 Buchanan Street, Albany, CA, 94710, 415-466-3804 McCornick, Sheila, USDA-AKS-FGCR, 800 Buchanan Street, Albany, CA, 94710, 415-466-3804 McCoulingh, Adrew, Department of Agronomy, University of Arizona, Tucson, AZ, 85721, 602-261-3357 McCallingh, Adrew, Department of Salology, Georgia State University, Atlanta, CA, 30602, 404-542-7980 McKillin, David E., Department of Salology, Georgia State University, Stilawter, OK, 74078, 405-624-5559 McKillin, Deyt Genet & Bilogy, Georgia State University, Stilawter, OK, 74076, 405-624-559 Methide, D., Dept Botany & Microbiology, Gklaboma State University, Stilawter, OK, 74076, 405-624-559 Methide, D., Dept Botany & Microbiology, Gklaboma State University, Stilawter, OK, 74076, 405-624-559 Methide, D., Dept Botany & Microbiology, Ball St Mikache, J. P., USDA NPS, Bldg 005, Rm 239, BARC-4, Beltaville, MD, 20705
Mikula, Bernard C., Defiance College, Defiance, OR, 43512, 419-784-4010 EXT 426
Milles, Donald, Tucker Hall, University of Miseouri, Columbia, MO, 65211, 314-882-6675
Miranda, L. T. De, Instituto Agronomico, Caixa Postal, 28, 13.100 Campinas SP, Brazil, 0192-420235
Mock, James J., Northrup King Company, 1500 Jackson St NR, Po Box 959, Minneapolis, NN, 55440
Modena, Stephen, Dept. of Crop Science, North Carolina State Univ., Box 7620, Raleigh, NC, 27695, 919-737-2704
Mofgord, D. J., Aggrow Research Sta, P.O. Box 152, Bronkhorstpruit 1020, S Africa, (012) 982400
Mohawed, A. H., Department of Biology, University of Missouri, Kansas City, MO, 64110, 816-276-1385
Molin, Amrcia del Carmen, Inst Pitotec Santa Catalina, Llavallol, Argentina
Molin, Robert H., Department of Genetics, North Carolina State Univ, Box 7614, Raleigh, NC, 27695-7614, 919-737-2289
Molnar, S. J., Agriculture Canada, Gen Eng Ottawa Res Sta, Ottawa, Ontario KiA CC6, Canada, 613-995-7300 EXT 313
Moore, Carol W., Dept Rad Biol 5 Biophysics, School of Medicine, University of Rochester, Rochester, NY, 14642, 716-275-5220
Mora, G., GIE Pioneer-France, Epuiseau, 41290 Oucques, France
Mortoz, Sandor, Cereal Research Institute, Alsokikoto sor 9, Szeged, H-6726, Hungary
Mortinger, John, Department of Botany, University of Nebraska, Lincoln, NE, 68583-0915, 402-472-1534
Mottinger, John, Department of Mariouxy University of Rhode Island, Kingston, RI, 02881, 401-792-2625
Muchena, S. C., Ministry of Agriculture, Private Bag 7701, Causeway Harare, Zimbabwe, 706081
Mukherjee, B. K., Cummings Lab, Indian Agr Res Inst, New Delhi 110012, India, 586198
Mulcahy, David, Botany Department, Min of Massachusetts, Amherst, MA, 01003, 413-545-2238
Mumm, V. J., Box 306, Milford, IL, 60953, 815-889-4550
Murphy, T. C Manda, Dave K., O's Gold Seed Co, PD Box 460, Parkersburg, IA, 50665, 319-347-6633
Nacayan, Kishen, Maize Res Station, Amberpet, Hyderabad 500013 A.P., India
Nasser, DeLill S., Eukaryotic Genetics Program, Division of Cell Biology, National Science Foundation, Washington, DC, 20550, 202-357-0112
Natarajan, Guru murti, Department of Agronomy, Iowa State University, Ames, IA, 50011, 515-294-5076
Natli, Ihomas A., Robson Seed Farms Corp, FD Box 270, Hall, NY, 144651
Nidegwa, C., P.O. Box 553, Kitale, Kenya, 20941
Nebiolo, Christine M., Dept of Biology, Allegheny College, Meadville, PA, 16335, 814-724-5360
Neely, J. Winston, Cokers Pedigreed Seed Co, Hartsville, SC, 29550
Nel, P. M., Dept of Genetics, Univ of The Witwatersrand, Johannesburg 2001, S Africa, 011-716-2134
Nelson, S. W., CIBA-GEIGY Ltd, PO Box 92, Isando, 1600, S Africa, 011-706-7257
Nelson, Timothy, Department of Biology, Kline Biol Tower, PO Box 6566, Yale University, New Haven, CT, 06511-8112, 203-436-2571
Nelson, Jr., O. E., Department of Genetics, University of Wisconsin, Madison, WI, 53706, 608-262-3344
Nemeth, J., Gabonater Kutatointezet, Szeged, Also Kikoto sor 9, Hungary, 62-17-025
Nesticky, Milan, Naize Research Institute, 917 52 Trnava, Czechoslovakia
Newfrom, K., Dept Biol Sci, University of Missouri, Columbia, MO, 65211, 314-882-7735
Newhouse, Keith, American Cyanamid Co, P.O. Box 6100, Princeton, NJ, 08540, 609-799-0400 ext 2471
Newton, K., Dept Biol Sci, University of Missouri, Columbia, MO, 65211, 314-882-4049
Nigkerson, N. H., Department of Biology, Tufts University, Medrod, MA, 02155, 617-381-3544
Nider, Fabio, Dekalb Argentina Saciat, C.G. 25, 2741 Salto, Buenos Atres, Argentina, 0474-22350
Nitero-Sotelo, Jorge, Department of Biology, Tufts University, Medrod, MA, 02155, 617-381-3544
Nider, Fabio, Dekalb Argentina Saciat, C.G. 25, 7741 Salto, Bueno Norman, Penny, 1819 Addison #7, Berkeley, CA, 94704, 415-644-1688 Notani, N. K., Bhabha Atomic Res Centre, Biology Division, Mod Lab, Trombay, Bombay 400085, India, 5510323 Novak, F. J., Czech Acad Sci, Inst Exp Bot, Sokolovska 6 772 00, Olomouc, Czechoelovakia, 068-29521 O'Reilly, Catherine, Sunderland Polytechnic, Biology Department, Chester Road, Sunderland SRI 3SD, U K, 0783-76231 Oaks, Ann, Biology Department, McMaster University, Hamilton, Ontario L88 4K1, Canada, 416-525-9140 EXT 4377 Oberthur, Elizabeth E., 27, Cytogenetics, Agronow Department, Towa State University, Ames, IA, 50010, 515-294-1360 Ochieng, Joseph A. W., NARS-Kitale, P.O. Box 450, Kitale, Kenya Ogle, Charles W., RR 1, Box 162, Sugar Grove, IL, 60554, 312-466-4742 Ohta, Y., Inat Agr & Forestry, Univ of Taukuba, Sakura-Mura, Ibaraki-Ken 305, Japan, 0298-53-6691 Oishi, Karen, Department of Genetics, University of California, Berkeley, CA, 94720, 415-642-9544 Okabe, Takashi, Hokkaido Nat Agr Exper Sta, Hitsujigaoka, Sapporo, Japan

Okuno, K., Div Genetics, NIAS, Yatabe, Tsukuba 305, Japan Openshaw, Steve, Dekalb Pfizer Genetics, 3100 Sycamore Road, Dekalb, IL, 60115, 815-756-3671 Osborne, Jane, 305 Manter Hall, University of Nebraska, Lincoln, NE, 68502, 402-472-5729 Openisnaw, Greve, Dekalo Frizer Genetics, 1000 Sycamore Road, Dekalo, 11, 0017, 01770-3011
Osborne, Jane, 305 Manter Hall, University of Nebraska, Lincoln, NE, 68502, 402-472-5729
Osler, R. D., CIMMYT, Apartado Postal 6-641, 06600 Mexico D.F., Mexico, (905) 5-85-43-55
Osterman, John, School of Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, 402-472-5129
Ottaviano, E., Dip de Biol Sez di Genet, e Microbiol, Via Celoria 26, 20133 Milano, Italy, 02-230823
Paez, Alix V., PO Box 316, Pioneer Hybrid Intern Inc, 6800 Pioneer Pkwy, Johnston, IA, 50131, 515-270-3145
Palmer, Reid, Agronomy Department, Iowa State University, Ames, IA, 50010, 515-294-7378
Palmer, Susan E., Box 54, Medical Center, School of Medicine, West Virginia University, Morgantown, WV, 26506
Pan, David, Department of Genetics, University of Misconsin, Madison, WI, 53706
Pan, Yong-Bao, 714 Paumel Court, Ames, IA, 50010, 515-292-4782
Pareddy, Dayakar R., Department of Plant Sci. Biological 6 Geological Bidg, University of Western Ontario, London N6A 5B7, Canada
Park, Keun Yong, Grop Experiment Station, Office of Rural Development, Suwon 170, Korea
Paterniari, Ernesto, Univ Sao Paulo Esc Sup Agr, Luiz de Queiroz, Piracicaba, Brazil
Patterson, Earl, Agron Dept, S-116 Turner Hall, University of Illinois, 1102 S. Goodwin Avenue, Urbana, IL, 61801, 217-333-9641
Pauly, Michael H., Rogers Brothers Seed Co., P.O. Box 1069, Nampa, ID, 83653
Pawar, S. E., Biol/Agtic Div, Bhabha Atomic Research Center, Trombay Bonbay 40085, India, 5514910 ext 2340
Peacock, W. J., Division of Plant Industry, CSIRO, Canberra ACT, Australia, 062-465250
Pearson, Mark L., E. I. Du Pont de Nemours & Co, Cent Res & Develop Dept, Exp Sta, E328/241, Wilmington, DE, 19898, 302-772-2140
Peelham, John, Inst of Terrestrial Ecol, Bush Estate, Pentourk, Midlothian EM26 0QB, Scotland Pelham, John, Inst of Terrestrial Ecol, Bush Estate, Penicuik, Midlothian EH26 00B, Scotland Penny, L., Asgrow Seed Co, 634 E. Lincoln Way, Ames, IA, 50010, 515-232-7170 Pereira, Andy, 27, Cytogenetics, Agronomy Department, Iowa State University, Ames, IA, 50010 Pereira, Andy, 27, Cytogenetics, Agronomy Department, Iowa State University, Ames, IA, 50010 Perkins, K. W., Carolina Bio Supply Co, Burlington, NC, 27215, 919-584-0381 Perry, H. S., 517 Westwood Drive North, Tallahassee, FL, 32304, 904-575-7978 Peschke, Virginia M., Dept. Agron. & Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108 Peters, D. W., O's Gold Seed Co, FO Drawer D, Farmer City, IL, 61842, 309-928-9445 Peterson, Karl, Box 187, Marshalltown, IA, 50158, 515-752-2170 Peterson, Peter A., Dept of Agronomy, Iowa State University, Ames, IA, 50011, 515-294-9652 Peterson, Thomas A., CSIRO, Division of Plant Industry, P.O. Box 1600, Canberra, A.C.T. 2601, Australia Pfahler, P. L., Agronomy Dept Univ F1, 304 Newell Hall, Gainesville, FL, 32611, 904-392-6186 Pfister, Walter, Pfister Hybrid Corn Co, El Paso, IL, 61738 Phillips, Ronald, Aeronomy & Pl Genetics, University of Minnesota, St. Paul, MN, 55108, 612-373-1366 Pfahler, P. L., Agronomy Dept Univ F1, 304 Newell Hall, Gainesville, PL, 32611, 904-392-6186
Pfister, Walter, Pfister Hybrid Corn Co, El Paso, IL, 61738
Phillips, Ronald, Agronomy & Pl Genetics, University of Minnesota, St. Paul, MN, 55108, 612-373-1366
Philney, Bernard O., Division of Botany, University of Calif, Los Angeles, CA, 90024, 213-825-3177
Pinter, Lajos, Research Inst for Forage Crops, Szentlorinc P.O. 805, M-7940, Hungary
Plewa, Michael, 302 Environ Res-1005 W Western, University of Illinois, Urbana, IL, 61801, 217-333-3614
Poethig, R. Scott, Biology Department, Leidy Labs/67, University of Pennsylvania, Philadelphia, PA, 19104, 215-898-8915
Poff, Kenneth L., NSU-DOR Plant Res Lab, Michigan State University, East Lansing, MI, 48824-1312
Pogna, N. E., Exp Inst Cer Res, 20079 S. Angelo, Lodigiano, Italy
Pohlanan, Bob, University of Minnesota, Department of Biochemistry, 1479 Gortner Avenue, St. Paul, MN, 55108, 612-376-9273
Polacco, Mary, Biochemistry, 107 Schweitzer Hall, Univ of Missouri, Columbia, MO, 65211, 314-882-6434
Pollacsek, M., Station D Amelior Dea P1-INRA, 63039 Clermont Ferrand, France, 73-92-45-30
Pollak, Linda, Dept of Agronomy, Iowa State Univ, Ames, IA, 50011, 515-294-3052
Pollack, Patricia L., Department of Biology, Univ of Saskatchewan, Saskatoon, Sask. S7N 0WO, Canada, 343-5280
Ponouleit, Charles G., Agronomy, University of Kentucky, Lexington, KY, 40546-0091, 606-257-4934
Popow, G., Dubendorfstracse 8, CH-8602 Wangen (ZH), Switzerland, 01-833-2456
Pots, Yoonne, NPI, 417 Wakara Way, Salt Lake City, UT, 84108, 801-582-0144
Pradhan, K., West Bengal Haringhata Farm, PO Mohampur, Dist Nadia, West Bengal, India
Prensky, Wolf, Braton Biotechnical Inc, Box 234, Hawthorne, NY, 10532, 914-747-1522
Price, S. C., Standard Oil Co, 3092 Broadway, Cleveland, OH, 44115, 216-271-8192
Pring, D. R., Dept of Plant Pathology, University of Florida, Gainesville Qin, Tai-Chen, Department of Agronomy, Jiangsu Agriculture College, Jiangsu, Yangchou, China Raab, Quinton J., Asgrow Seed Company, 205 N. Michigan, Rt. 1 Box 22, Oxford, IN, 47971, 317-385-2201 Raboy, Victor, Bl4 Genetics, 445 Henry Mall, University of Wisconsin, Madison, WI, 53706, 608-262-3287 Raab, Quinton J., Asgrow Seed Company, 205 N. Michigan, Rt. 1 Box 22, Oxford, IN, 47971, 317-385-2201
Raboy, Victor, Bil Genetics, 445 Henry Mall, University of Wisconsin, Madieon, WI, 53706, 608-262-3287
Rabson, Robert, Biological Energy Sciences, Office of Basic Energy Sci, U.S. Dept of Energy, ER-17 GTN, Washington, DC, 20545, 301-353-2873
Raccht, M. L., Univ di Milano, Dept Genetics & Microbiology, Via Celoria 26, 20133 Milan, Italy
Rakha, Fravuk A., Dep Genetics Fac Agric, Alexandria University, Alexandria, Egypt, 966386
Ralston, Ed, Advanced Genetic Sciences, 6701 San Pablo, Oakland, CA, 94608, 415-547-2395
Raman, Rajhi, 114, NRL, Indian Agr Res Inst, New Delhi 110012, India, 588783
Rao, Arelli P., 16-11-417/6, Mosarambagh, Hyderabad-500003, India, 66471 ext 390
Reddy, A. R., School of Life Sci, Univ of Hyderabad, Hyderabad-500007, India
Reddy, G. M., Department of Genetics, Osmania University, Hyderabad-500007, India
Reddy, Lekkala V., Blochemistry Department, University of Iowa, Iowa City, IA, 52242, 319-353-7333
Reded, G. P., Curtis Hall, University of Missouri, Columbia, MO, 65211, 314-682-6434
Reed, J. E., Pfizer Genetics, Box 367, Windfall, IN, 46076, 317-945-7121
Rees, Garol, Plant Sciences Dept, Univ of Western Ontario, London, Ontario, Canada, 519-679-2908
Rekavdintafjo, S., Pioneer Agricultural Botany Dept, Univ College of Wales, Aberystwyth, Wales, U K, 0790-3111
Reid, W. R., O's Gold Seed Company, P.O. Box 460, Parkersburg, IA, 50665
Reway, Frank M., Cargill Inc, Seed Div, PO Box 5645, Minneapolis, MN, 55440, 612-890-1852
Reeys, Pedro, Departamento de Agronomi, Sucursal de Correos J., Monterrey, N.L., Mexico, 83-59-24-40
Rhoades, M. M., Biology Dept, Indinae University, Bloomington, IN, 47401, 812-395-319
Rhoades, M. M., Kiology Dept, Indiana University, Bloomington, IN, 47401, 812-395-319
Rhoades, M. M., Bi Ricce Thomas B., Pfizer Inc. Eastern Point Road, Groton, CT, 06340, 203-441-4576
Rice Thomas B., Pfizer Inc. Eastern Point Road, Groton, CT, 06340, 203-441-4576
Riedel, Rod, Genetics Institute, 87 Cambridge Park Drive, Cambridge, MA, 02140, 617-876-1170
Rieffel, Larry D., 598 East 2nd Street, El Paso, IL, 61738, 309-527-2676
Rinke, E. H., 9505 Gien Oaks CR., Sun City, AZ, 85351, 602-933-9646
Rivin, Carol, Dept. of Botany, Oregon State University, Corvallis, OR, 97331, 503-754-4433
Robbelen, G., Inst fur Pflanzenbau, 34 Gottingen, Vonslebold Strasse 8, W Germany
Roberts, Jean L., Lilly Research Labs, Greenfield, IN, 46140, 317-467-4788
Robertson, Dominique, Dept Plant Breeding, Cornell University, Ithaca, NY, 14853
Robbertson, Donald S., Department of Genetics, Iowa State University, Ames, IA, 50010, 515-294-3908
Robitson, Glenn, Dekalb-Pfizer Genetics, Sycamore Road, Dekalb, IL, 60115, 815-756-3671 EXT 265
Rocheford, Torbert, 313 Kaim Hall, Department of Agronowy, University of Nebraska, Lincoln, NE, 68583-0915
Rockwell, Bruce H., Box 988, 3600 Cheatnut Strieet, Philadelphia, FA, 19104
Rodrigues, Deimo Diogo, Sem Cargili Ltda, Sitio Sao Jao Barao Geraldo, Caixa Postal, 6553, Campinas S.P. 13.100, Brazil, 0192-39-13-81
Ropser, J. A., Dept of Genetics, The University, Sheffield 10, U K, 0742-7855
Rossman, E. C., Dept of Con & Soil Sci, Michigan State University, Kast Lansing, MI, 48823, 517-355-2289
Roth, Bradley A., 8 Curtiss Hall, Department of Genetics, Iowa State University, Ames, IA, 50011
Rot, Bradley A., 8 Curtiss Hall, Department of Genetics, Iowa State University, Ames, IA, 50011
Roth, Bradley A., 8 Curtiss Hall, Department of Genetics, Iowa State University, Ames, IA, 50011, 515-294-4618
Roussell, Deborath L., Div Biol Sci, Incker Hall, Univ of Missouri, Columbia, Mo, 65211, 314-882-8033
Rubenstein, Irwin, Dept Geneti

Saad, Shawky Farid abooel, SIDS Agriculture Research Stn, Beni-Suef, Egypt
Sachan, J. K. S., 114, NRL Div Genet, IARI, New Delbi-12 110012, India, 588783
Sachs, M. M., Department of Biology, Campus Box 1137, Washington University, St. Louis, MO, 63130, 314-889-4631
Sadek, Sadek el Shahat, Gemmeiza Agriculture Res Stn, Gharbia, Egypt
Saedler, H., Max-Planck Inst Zuchtungsforsc, Egelspfad, D 5000 Koln 30 Vogelsang, W Germany, 221-5062200
Sagaer, Ruth, DANA Cancer Ctr, 44 Binney Street, Boston, MA, 02115, 617-732-3380
Saha, B. C., Agriculture College, PO Sabour Dist Bhagalpur, Bihar, India 813210
Salama, Fawzy A., Nubaria Research Station, El-Naser North Tahrit Sector, El-Ameria, Egypt
Salamini, Francesco, Ist Sper Cerealicoltura, Yia Stezzano 24 (PO Box 164), 24100 Bergamo, Italy, 035-248823
Salerno, Juan C., Dept Genetica, INTA, Castelar, C.C. 25, 1712-, Castelar- Buenos Aires, Argentina
Sanchez, F. M., Colegio de Postgraduados, Chapingo, Mexico, 585-0728
Sano, Y., Nat Inst Genetics, Misima, Japan
Santos, M. A., Dep Biol Molec Agro, Centro Invest Desarrollo, 08034 Barcelona, Spain Sanchez, F. M., Colegio de Postgraduados, Chapingo, Mexico, 585-0728
Sano, Y., Nat Inst Genetics, Misima, Japan
Santos, M. A., Dep Biol Molec Agro, Centro Invest Desarrollo, 08034 Barcelona, Spain
Saratva, L. S., Genetica Dept Biol Geral, Univ Ped Vicosa, 36570 Minas Gerais, Brazil
Sarkar, K. R., Room 114, Nuclear Research Lab, Indian Agric Res Inst, New Delhi-12, India
Sarna, J. S. P., Dept of Botany, C.S.R. Sarma College, Ongole-523 001, Andhra Pradesh, India, 2684
Sastry, G. R. K., Dept of Genetics, University of Leeds, Leeds-2, U K, 0532-431751 EXT 598
Sauvaire, D., CIRAD - IRAT, B.P. 910, Bobo-Dioulasso, Burkina Faso, 99-03-57
Saxena, V. K., Dept Plant Breed, Punjab Agric Univ, Ludhiana 141004, India
Sayed, Sayed Galal, PO Box 953, Caico, Egypt, 847718
Scandalios, J. G., Dept of Plant + Soil Sci, Montana State University, Bozeman, MT, 59715, 406-994-5066
Schell, J., Max-Planck-Institut, 5000 Koln 30, West Germany
Scherfer, Jurgen R., Dept of Soil Sci, Texas A & M Univ, College Station, TX, 77843, 409-260-9252
Schtefelbein, John W., Bl4 Genetics, 445 Henry Mall, University of Wisconsin, Madison, WI, 53706, 608-262-3287
Schillinger, John Asgrow Seed Company, 634 E. Lincolnway, Ames, IA, 50010, 515-232-7170
Schnalt, Robert J., Biology Department, Building 463, Brookhaven National Lab, Upton, NY, 11973, 516-282-3396
Schnall, F. W., Windhalaweg 19, 7000 Stuttgart 70, W Germany 0711-453367
Schwartz, Drew, Biology Dept, Indiana University, Bloomington, IN, 47401, 812-335-6060
Schwartz, Drew, Biology Dept, Indiana University, Bloomington, IN, 47401, 812-335-6060
Schwer, Joseph F., Lilly Greenfield Labs, P.O. Box 708, Greenfield, IN, 46140
Scoles, Graham J., Crop Sci Dept, Univ of Saskatchewan, Saskatoon S7N 0W0, Canada, 306-343-5708
Scoles, Graham J., Crop Sci Dept, Univ of Saskatchewan, Saskatoon S7N 0W0, Canada, 306-3 Schy, W. E., 112 Environ Res-1005 W Western, Univ of Illinois, Urbana, IL, 61801, 217-333-8018
Scoles, Graham J., Crop Sci Dept, Univ of Saskatchewan, Saskatoon S7N 0W0, Ganada, 306-343-5708
Scott, Gene E., Agronomy Dept, Box 5248, Mississippi State University, Mississippi State, MS, 39762, 601-325-2311
Sehgal, S. M., Pioneer Hi-Bred Intnl Inc, 6800 Pioneer Pkey, Johnston, IA, 50131, 515-270-3103
Sevilla P., Ricardo, Programa de Maiz, Univ Nactonal Agraria, Aptdo 456, La Molina, Lima, Peru
Shadley, Jeff D., Illinois State University, Dept Biol Sciences, Normal, IL, 61761, 309-438-2685
Shafer, John, 3031 N Roselawn Drive, Logansport, IN, 46947, 219-733-5547
Shands, Henry, Natl Program Staff, UBA-ARS, Beltaville, MD, 20705, 301-344-3311
Sharma, C. B. S. R., Dept Environ, School Energy Environ Nat Res, Madurai Kamaraj University, Madurai 625021, India Sharma, N. D., Division of Biochemistry, Indian Agric Res Inst, New Dehli 110012, India
Sharwa, N. D., Division of Biochemistry, University, S02-772-1519
Shepherd, Nancy, Duront E326/2466A, Wilangton, DE, 19806, 302-772-1519
Sherlan, W. F., Biology Department, Univ of North Dakots, Grand Forks, ND, 58202, 701-777-4479 or 777-4206
Shutka, P. T., Department of Biology, New Mexico Inst M + T, Scorro, NM, 87801, 505-835-5608
Shukla, P. T., Department of Genetics, The Hebrew University, Junagadh Campus, Junagadh-362001, India, 93 EXT 51
Shure, M., Garnegie Inst Wash, 115 W Univ Parkway, Baltimore, MD, 21210, 301-467-1414
Sidmon, Giora, Department of Genetics, The Hebrew University, Jerusalem 91904, Israel 91904
Simcon, K., Dept Plant Path, Univ of Nebraska, Lincoln, NE, 68583, 402-472-6024
Simon, R. D., Dept of Biology, State Univ Coil A + S Geneseo, NY, 14454, 716-245-5301
Sinola, J. S., Dept of Plant Breeding, G. B. Pant Univ, Agr & Tech, Pantnagar, Nainitai, India, 582372
Sisco, P. H., Dept C Skogen-Hagenson, Mary Jane, Department of Genetics, Rm. 10 Curtiss Hall, Iowa State University, Amés, IA, 50011, 515-294-4618
Smeltzer, Dale, The Rockefeller Found, GPO Box 2453, Bangkok, Thailand
Smith, James D., PO Box 2132, Department Soli & Grop Sci, Texas A & M University, College Station, TX, 77843, 409-845-8276
Smith, James D., PO Box 2132, Department Soli & Grop Sci, Texas A & M University, College Station, TX, 77843, 409-845-8276
Smith, Stear S., Pioneer Hi-Bred Internatl, Plant Breeding Division, P.O. Box 85, Johnston, IA, 50131, 515-270-3300
Smith, Steve, Pioneer Hi-Bred Internatl, Plant Breeding Division, 7301 N.W. 62nd Avenue, Johnston, IA, 50131, 515-270-3353
Snape, John W., Plant Breeding Institute, Marie Lane, Trumpington, Cambridge C32 2LQ, 0223-840411
Snope, Andrew, Div of Science + Math, Essex Community College, Essex, MD, 21237, 301-522-1280
Snyder, John R., United Agriseeds, 103 Tomaras, Savoy, IL, 61874, 217-373-5300
Sower, C., Inst Biosintesi Veg Cnr, Via Bassini 15, Milano, Italy
Soleada, S. V., Tagum, Northdavao 9401, Philippines
Somera, David A., Dept Agron, S-120 Turner Hall, University of Hinnesota, St. Paul, MN, 55108, 612-373-1373
Song, Moahan, Shanik Acad Agri, Sci, the Upjohn Co, Kalamazoo, MI, 49001, 616-385-4582
Sprague, G. F., Dept Agron, S-120 Turner Hall, University of Hilinois, 1102 S. Goodwin Avenue, Urbana, IL, 61801, 217-333-4254
Springer, Warren, Northrup King Company, Stanton, MN, 55081, 507-653-621
Stark, Flindis Foundation Seeds Inc., 6959 River Road, Deforest, WI, 53332, 608-846-3066
Startijnger, P., Inst Genetik, Univ Koln, D-5000 Koln 41, Weyertal 121, W Germany, 221-470-2465
Start, Milling G., Dept of Bology, Univ of Calif-San Diego, La Jolia, CA, 92037, 619-432-3746
Stein, Otc L., Dept of Bology, Univ of Calif-San Diego, La Jolia, CA, 92037, 619-432-3746
Steinesen, D. M., 515 Morrill H Stucker, Robert, Dept of Agron + PI Gen, University of Minnesota, St Paul, MN, 55108 Styles, E. D., Biology, Univ of Victoria, Victoria, British Columbia V8W 2Y2, Canada, 604-721-7101 Sundaresan, V., Department of Genetics, 345 Mulford Hall, University of California, Berkeley, CA, 94720, 415-642-7085 Sundaresan, V., Department of Genetics, 345 Mulford Hall, University of California, Berkeley, CA, 94720, 415-64
Sung, Tong Ming, Dept of Agronomy, Beijing Agric Univ, Beijing, China, 28-5831
Suprasana, P., Department of Genetics, Osmania University, Hyderabad-500 007, A.P., India
Susaex, I. M., Dept Biol, PO Box 6666, Yale University, New Haven, CT, 06511, 203-432-4636
Swaminathan, M. S., International Rice Res Inst, Los Banos, Philippines
Talbert, Luther, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, 503-686-5136
Tang, Ching-Yan, Maize Research Program, IITA, Oyo Road, PMB 5320, Ibadan, Nigeria
Tantravahi, R. V., Sub Exp Sta, Univ Mass, 240 Beaver Street, Waltham, MA, 02154
Taylor, Brian H., CSIRO, Division Plant Industry, Clunies Ross St, Acton, A.C.T., Australia
Taylor, Loverine P., Dept Plant Biol, Carnegie Inst Wash, 290 Fanama Street, Stanford, CA, 94305, 415-325-1521
Thompson, D., 191 Summer Blvd, Collinsville, IL, 62234, 618-345-0426
Thompson, M. K., Medical Department, Brookhaven National Lab, Upton, NY, 11973 Thompson, M. E., Medical Department, Brookhaven National Lab, Upton, NY, 11973

Thompson, Steven A., United Agriseeds, 103 Tomaras, Savoy, IL, 61874, 217-373-5300 Thornbury, David W., S-305 Ag Science Center N, Dept Plant Path, University of Kentucky, Lexington, KY, 40546, 606-257-2681 Timothy, David R., Dept of Crop Science, North Carolina State Univ, Box 7620, Raleigh, NC, 27695-7620, 919-834-5161 Ting, Chu-Po, Shandong Agricultural College, Taian, Shandong, China Ting, Yu-Chen, Biology, Boston College, Chestnut H11 67, Boston, MA, 02167, 617-969-0100 EXT 3551 Tintorri, John A., 53 Hampshire Drive, Mendham, NJ, 07945 <code-block><code-block><code-block><code-block></code></code></code></code>

VII. RECENT MAIZE PUBLICATIONS

Abbott, A. G., Fauron, C. M. R., 1986. Structural alterations in a transcribed region of the T type cytoplasmic male sterile maize mitochondrial genome. Curr. Genetics 10:777-783.

- Abe, M., Miyazawa, Y., Arai, S., 1986. Properties of zein in relation to its precipitability. Agr. Biol. Chem. Tokyo 50:785-786.
 Abou-Mandour, A. A., Hartung, W., 1986. The effect of abscisic acid and increased osmotic potential of the media on growth and root regeneration of Zea mays callus. J. Plant Physiol. 122:139-146.
- Abou-Mandour, A. A., Martung, W., 1960. The effect of abscist acts and increases osmothe potential of the media on growth and root regeneration of <u>Zee mays</u> callus. J. Flant Physiol. 122:139-146.
 Albrecht, K. A., Martin, M. J., Russell, W. A., Wedin, W. F., Buxton, D. R., 1986. Chemical and in vitro digestible dry matter composition of <u>maize</u> stalks after selection for stalk strength and stalk-root resistance. Crop Sci. 26:1051-1055.
 Alezandrescu, V., Elshouny, F. M., 1986. Genetic variability of peroxidase in the leaves of some maize inbred lines. Rev. Roum. Biochim. 23:89-00.
- Ampofo, J. K. O., 1985. <u>Chilo partellus</u> (Swinhoe) oviposition on susceptible and resistant maize genotypes. Insect Sci. Appl. 6:323-330.
 Ampofo, J. K. O., 1986. <u>Effect of resistant maize cultivars on larval dispersal and establishment of <u>Chilo partellus</u> (Lepidoptera, Pyralidae). Insect Sci. Appl. 7:103-106.
 </u>
- 9. Ampofo, J. K. ., Dabrowski, Z. T., Omolo, E. O., 1986. Registration of germplasm lines of maize (ICAl-CM = CMT33;2,3; ICA2-CM = CMT324;2,3). Crop Sci. 26:650.
- Ananiev, E. V., Bochkanov, S. S., Ryzhic, M. V., Chernyshev, A. I., Sonina, N. V., Shchipkova, N. I., 1986. Cross-hybridization of cloned repeated sequences of barley genome with DNAs from wheat, rye, and maize. Genetika SSSR 22:2021-2024.
 Anderson, R. C., 1985. Aspects of the germination ecology and biomass production of Eastern Gamagrass (<u>Tripsacum dactyloides</u> L.). Bot. Gaz.
- 146:353-364.
- 140:355-364.
 Anderson, R. C., Liberta, A. E., 1986. Occurrence of fungal-inhibiting <u>Pseudomonas</u> on caryopses of <u>Tripsacum dactyloides</u> L. and its implication for seed survival and agriculture application. J. Appl. Bacteriol. 61:195-200.
 Aoyagi, K., Bassham, J. A., 1986. Appearance and accumulation of C₄ carbon pathway enzymes in developing maize leaves and differentiating maize Al88 callus. Plant Physiol. 80:322-333.
- 14. Avila, G., 1985. Using temperate geruplasm in tropical maize improvement in Bolivia. Pp. 133-141 in A. Brandolini and F. Salamini, eds. (which
- see). Baeshin, N. A., El-Sayed, S. A., 1985. Cytogenetic responses of gamma-irradiated Zea mays seeds in relation to prolamin components. Ann. Agric. Sci. 30:475-486.
- Bagnara, D., 1985. Effect of population stress and intra-ear growth relationships on kernel yield in 10 corn (Zea mays L.) hybrids. Maydica 30:339-351.
- Bagrationi, N. N., 1986. Characteristics of growth responses in seedlings of tall and short types of corn. Sov. Plant Physiol. 33:272-276.
 Bajza, A., Aguilar, R., Sanchez de Jimenez, E., 1986. Histones and the 1st cell cycle in maize germination. Physiol. Plant. 68:259-264.
 Baker, B., Schell, J., Lorz, H., Fedoroff, N., 1986. Transposition of the maize controlling element "Activator" in tobacco. Proc. Nat. Acad. Sci. USA 83:4844-4848.
- Banks, J., Kingsbury, J., Raboy, V., Schiefelbein, J. W., Nelson, O., Fedoroff, N., 1985. The <u>Ac</u> and <u>Spm</u> controlling element families in maize. Cold Spring Harbor Symp. 50:307-311.
 Bansal, R. K., 1983. Maize. Pp. 35-40 in Plant Breeding in New Zealand, G. S. Wratt and H. C. Smith, eds., Butterworths, Wellington, New
- Zealand.
- 22. Barciszewska, M. Z., Mashkova, T. D., Kisselev, L. L., Barciszewski, J., 1985. The primary structure of maize and tobacco 55 rRNA. FEBS Lett.
- 192:289-293.
 Barkan, A., Miles, D., Taylor, W. C., 1986. Chloroplast gene expression in nuclear, photosynthetic mutants of maize. EMBO J. 5:1421-1427.
 Barkan, A., Miles, D., Taylor, W. C., 1986. Chloroplast gene expression in nuclear, photosynthetic mutants of maize. EMBO J. 5:1421-1427.
 Bartow, P. W., Rathfelder, E. L., 1985. Cell division and regeneration in primary root meristems of Zea mays recovering from cold treatment. Environ. Exp. Bot. 25:303-314.
 Bartiga-B, P., 1985. Pinguino: a new corn variety for Southern Chile. Agro. Sur. 13:135.
 Barty, D., Zuber, M. S., Lillehoj, E. B., McMillian, W. W., Adams, N. J., Kwolek, W. F., Widstrom, N. W., 1985. Evaluation of two arthropod vectors as inoculators of developing maize ears with <u>Aspergillus flavus</u>. Environ. Entomol. 14:634-636.
 Bartkowiak, E., 1986. Plant cell and tissue culture—prospects for plant genetics and breeding. Genet. Pol. 26:173-186.
 Bartkowiak, E., Peterson, P. A., 1984. Expression of controlling element mutability in solid and liquid cultures of the maize endosperm in vitro. Bull. Pol. Acad. Sci. Biol. 32:371-378.
 Bastkowiak, J., Huet, J.-C. Mosse. J. 1986. Variability and relationships among and control and relationships.

- Bull. Pol. Acad. Sci. Biol. 32:371-378.
 29. Baudet, J., Huet, J.-C., Mosse, J., 1986. Variability and relationships among amino acids and nitrogen in maize (Zea mays) grains. J. Agric. Food Chem. 34:365-370.
 30. Bedinger, P., Walbot, V., 1986. DNA synthesis in purified maize mitochondria. Curr. Genetics 10:631-637.
 31. Beglaryan, N. P., Pivazyan, A. A., Abramyan, L. Kh., 1985. Influence of gibberellic acid on the ultrastructure of the maize leaves in the early stages of ontogenesis. Biol. Zh. Arm. 38:587-590.
 32. Belkova, L. S., Krylov, S. V., 1985. Effect of hydrophobization of corn seeds on meristem cell division in embryonic roots. Izv. Timiryazev S.-Kh. Akad. (3):193-195.
 33. Belousov, A. A., 1985. High lysine corn hybrids and approach to increasing their productivity and improving the agronomical and technological properties. S.-Kh. Biol. (12):23-27.
 34. Belousov, A. A., Klyuchko, P. F., Agboire, S. A., 1985. Use of gene-modifiers for improving the physical structure of high lysine maize. Izv.
- 34. Belousov, A. A., Klyuchko, P. F., Agboire, S. A., 1985. Use of gene-modifiers for improving the physical structure of high lysine maize. Izv.
- Timiryzarv S.-Kh. Akad. (6):56-60.
 Below, F. E., Craftz-Brandner, S. J., Hageman, R. K., 1985. Effect of foliar applications of urea on accelerated senescence of maize induced by ear removal. Plant Physicl. 79:107-1079.
 Berjak, P., Dini, M., Gevers, H. O., 1986. Deteriorative changes in embryos of long-stored, uninfected maize caryopses. S. Afr. J. Bot. 52:109-116.
- 37. Berzonsky, W. A., Hawk, J. A., 1986. Agronomic features of 2 maize synthetics selected for high and low stalk-crushing strength. Crop Sci. 26:871-875.
- 38. Berzonsky, W. A., Hawk, J. A., Pizzolato, T. D., 1986. Anatomical characteristics of 3 inbred lines and 2 maize synthetics recurrently selected
- Berzonsky, W. A., Hawk, J. A., Pizzolato, T. D., 1980. Anatomical characteristics of 3 inbred lines and 2 maize synthetics recurrently selecte for high and low stalk crushing strength. Crop Sci. 26:482-488.
 Bhalla, S. K., Sharma, R. K., Aggarwal, K. N., Sharma, B. K., 1985. Actual and predicted performance of varietal crosses for grain yield and maturity in maize (Zea mays). Crop Improv. 12:35-38.
 Bianchi, A., 1984. Introduction: Maize controlling elements. Monogr. Genet. Agrar. (4):11-29.
 Bianchi, A., Salamini, F., 1986. Gene action and morphophysiological expression in maize breeding. Pp. 157-166 in G. M. Reddy and E. H. Coe, J. K. Starma, S. K. Starma, S. K. Starma, S. K. Starma, S. K. Salamini, F., 1986. Gene action and morphophysiological expression in maize breeding. Pp. 157-166 in G. M. Reddy and E. H. Coe, J. K. Starma, S. K.
- Jr., eds. (which see)
- 43. Binelli, G., DeManincor, E. V., Ottaviano, E., 1985. Temperature effects on pollen germination and pollen tube growth in maize. Genet. Agrar.
- 39:269-282. 44. Birchler, J. A., 1983. Chromosome manipulation in maize. Pp. 380-403 in Cytogenetics of Crop Plants, M. S. Swaminathan et al., eds., Macmillian
- India Ltd. 45. Bjarnason, M., Edmeades, G. O., Ortega, A., 1985. Improvement of some important traits of tropical maize. Pp. 409-428 in A. Brandolini and F.
- Salamini, eds. (which see). Salamini, eds. (which see). 46. Blatch, R., 1985. Function of genetic material: Transposable elements, seed proteins, and protein synthesis in higher plants. Prog. Bot. 47:198-207.
- 47:190-207.
 47. Bland, M. M., Levings, C. S. III., Matzinger, D. F., 1986. The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol. Gen. Genet. 204:8-16.
 48. Bogenschutz, T. G., Russell, W. A., 1986. An evaluation for genetic variation within maize inbred lines maintained by sib-mating and self-pollination. Euphysica 35:403-412.
 49. Boldmann P. G. S. Market and S. M. S. Market and S. Marke
- 49. Bollinger, E. K., Caelick, J. W., 1985. Factors influencing blackbird (Agelaius phoeniceus) damage to field corn. J. Wildl. Manage. 49:1109-1115.
- Boston, R. S., Larkins, B. A., 1986. Specific transcription of a 15-kilodalton zein gene in HeLa cell extracts. Plant Mol. Biol. 7:71-79.
 Botez, C., Panfil, C., Soumah, A., 1985. Analysis of genetic variance of some lines of dihaploid maize. Bul. Inst. Agron. Cluj-Napoca Ser. Agric. 39:61-66.
- S2. Bradley, D., Gatenby, A. A., 1985. Mutational analysis of the maize chloroplast ATPase-beta subunit gene promoter: the isolation of promoter mutants in <u>E. coli</u> and their characterization in a chloroplast <u>in vitro</u> transcription system. EMBO J. 4:3641-3648.
 S3. Braenden, C.-I., Eklund, H., Cambillau, C., Pryor, A. J., 1984. Correlation of exons with structural domains in alcohol dehydrogenase. EMBO J.
- 3:1307-1310.
- 54. Branca, C., Ricci, D., Scoccianti, V., 1985. Effect of auxins (IAA and OBTA) and antiauxins (PCIB and OBIA) on acid-induced growth in maize root segments. Maydica 30:371-382.
- Segments. Maydica 50:571-562.
 Strandolini, A., Salamini, F., 1985. Breeding Strategies for Maize Production Improvement in the Tropics. Food and Agriculture Organization of U.N., Florence/Bergamo, Italy.
 Branson, T. F., 1986. Larval feeding behavior and host-plant resistance in maize. Pp. 159-182 in Methods for the Study of Pest Diabrotica, J. L. Krysan and T. A. Miller, eds., New York, Springer Verlag.
 Branson, T. F., Valdes, H., Kahler, A. L., 1986. Evaluation of Mexican populations of maize for resistance to larvae of <u>Diabrotica virgifera</u> (Coleoptera, Chrysomelidae). Maydica 31:173-177.

- 58. Braun, C. J., Sisco, P. H., Sederoff, R. R., Levings, C. S. III., 1986. Characterization of inverted repeats from plasmid-like DNAs and the maize mitochondrial genome. Curr. Genetics 10:625-630. mitochondrial genome.
- BIOL 6:171-177.
- 60. Brettell, R. I. S., Dennis, E. S., Scowcroft, W. R., Peacock, W. J., 1986. Molecular analysis of a somaclonal mutant of maize alcohol
- debydrogenase. Mol. Gen. Genet. 202:235-239.
 Brewbaker, J. L., 1965. The tropical environment for maize cultivation. Pp. 47-77 in A. Brandolini and F. Salamini, eds. (which see).
 Brewbaker, J. L., 1965. The tropical environment for maize cultivation. Pp. 47-77 in A. Brandolini and F. Salamini, eds. (which see).
 Brewbaker, J. W. S., Wandelt, C., Feix, G., Neuhas, G., Schweiger, H. G., 1986. The upstream regions of zein genes--sequence analysis and expression in the unicellular green alga Acetabularia. Eur. J. Cell Biol. 42:161-170.
 Buddenhagen, I., 1985. Maize disease in relation to maize improvement in the tropics. Pp. 243-275 in A. Brandolini and F. Salamini, eds. (which see).
- see).
- 64. Bullard, R. W., York, J. O., 1985. Breeding for bird resistance in sorghum and maize. Pp. 193-222 in Progress in Plant Breeding--1, G. E.
- Russell, ed., Bitterworths, London. 65. Buntin, G. D., 1986. A review of plant response to fall armyworm, <u>Spodoptera</u> frugiperda, injury in selected field and forage crops. Fla. Entomol. 69:549-559.
- 66. Burnette, D. C., White, D. G., 1985. Inheritance of resistance to Bipolaria maydia Race 0 in crosses derived from nine resistant inbred lines of maize. Phytopathology 75:1195-1200.
- Burr, B., Burr, F. A., 1985. Toward a molecular characterization of multiple factor inheritance. Pp. 277-284 in Biotechnology in Plant Science, M. Zaitlin, P. Day, A. Hollaender, eds., Academic Press, New York.
 Camussi, A., 1986. Genetic distance and plant breeding, an example. Pp. 383-391 in Biometrics in Plant Breeding, Proc. Eucarpia Meeting,
- Birmingham.
- Generation of the state of the
- Carlson, W. R., 1986. The B chromosome of maize. CRC Crit. Rev. Plant 3:201-226.
 Chandler, V. L., Rivin, C. L., Walbot, V., 1986. Stable non-mutator stocks of maize have sequences homologous to the <u>Mul</u> transposable element. Genetics 114:1007-1021.
- 73. Chandler, V. L., Walbot, V., 1986. DNA modification of a maize transposable element correlates with loss of activity. Proc. Nat. Acad. Sci. USA 83:1767-1771.
- 74. Charlesworth, B., Langley, C. H., 1986. The evolution of self-regulated transposition of transposable elements. Genetics 112:359-383.
- 75. Chaubet, N., Philipps, G., Chaboute, M.-E., Ehling, M., Gigot, C., 1986. Nucleotide sequences of two corn histone H3 genes. Genomic organization of the corn histone H3 and H4 genes. Plant Mol. Biol. 6:253-263.

- of the corn histone H3 and H4 genes. Plant Mol. Biol. 6:253-263.
 76. Chen, C. H., Freeling, M., Merckelbach, A., 1986. Enzymatic and morphological consequences of Ds excisions from maize Adhl. Maydica 31:93-108.
 77. Cheng, P. C., Greyson, R. I., Walden, D. B., 1986. The anther cuticle of Zea mays. Can J. Bot. 64:2088-2097.
 78. Cheng, P. C., Iltis, H. H., Benz, B. F., 1986. The floral development of "Northern Teosinte" (Zea mays subsp. mexicana, race Nobogame). Proc. XIth Int. Cong. on Electron Microscopy, Kyoto, 1986, p. 3273-3274.
 79. Cho, H. Y., Widholm, J. M., Slife, F. W., 1986. Effects of Haloxyfop on corn (Zea mays) and soybean (Glycine max) cell suspension cultures. Weed Sci. 34:496-501.
 80. Chourey, P. S., Latham, M. D., Still, P. E., 1986. Expression of two sucrose synthetase genes in endosperm and seedling cells of maize: evidence of the sucrose synthetase genes in endosperm and seedling cells of maize: evidence of the sucrose synthetase genes in endosperm.
- of tissue specific polymerization of protomers. Mol. Gen. Genet. 203:251-255. 81. Chourey, P. S., Sharpe, D. Z., 1985. Callus formation from protoplasts of <u>Sorghum</u> cell suspension cultures. Plant Sci. 39:171-175. 82. Chourey, P. S., Still, P. E., 1986. Maize sucrose synthetase genes--A model system for structure function analysis in higher plants. Pp. 207-212

- in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
 83. Clark, J. K., Sheridan, W. F., 1986. Developmental profiles of the maize embryo-lethal mutants <u>dek22</u> and <u>dek23</u>. J. Hered. 77:83-92.
 84. Cobb, B. G., Hannah, L. C., 1986. Sugar utilization by developing wild type and <u>shrunken-2</u> matze kernels. Plant Physiol. 80:609-611.
 85. Coe, E. H., Jr., 1986. The gene: Is Mendelian genetics alive and well in higher plants? Pp. 27-37 in G. M. Reddy and E. H. Coe, Jr., eds. (which see). 86. Commean, V. L., Pappelis, G. A., Pappelis, A. J., Bemiller, J. N., 1985. Changes in DNA and in nuclear and nucleolar dry mass and area in

- Solution of the sense of the se

- synthase in maize leaf. Plant Physiol. 80:859-862.
 89. Compton, W. A., Nordquist, P. T., 1986. Registration of 4 parental inbred lines of maize. Crop Sci. 26:393.
 90. Coraggio, I., Compagno, C., Martegani, E., Ranzi, B. M., Sala, E., Alberghina, L., Viotti, A., 1986. Transcription and expression of zein sequences in yeast under natural plant or yeast promoters. EMBO J. 5:459-465.
 91. Cross, H. Z., 1986. Registration of ND-258 parental lines of maize (Zea mays). Crop Sci. 26:215.
 92. Cross, H. Z., 1986. Registration of NDSB-MS-C-6 maize (Zea mays) germplasm. Crop Sci. 26:208.
 93. Dang, L. H., Pring, D. R., 1986. A physical map of the Sorghum chloroplast genome. Plant Mol. Biol. 6:119-124.
 94. Danilenko, N. G., Palilova, A. N., 1985. Disturbances of regulation of the enzymes of carbohydrate metabolism during the development of anthers in maize plants with cytoplasmic male sterility. Ontogenez 16:281-287.
 95. Dankov, T. G., 1986. Core carrow finfestation of Tazze (Zea mays). C. R. Acad. Bulg. Sci. 39:119-120.
 96. Daranola, A. M., 1986. Core carrow infestation of Tazze (Zea mays). C. R. Acad. Bulg. Sci. 39:119-120.

- In maize plants with cytoplasmic male sterility. Untogenez 16:201-207.
 Dankov, T. G., 1986. Low purple marker of maize (Zea mays). C. R. Acad. Bulg. Sci. 39:119-120.
 Daramola, A. M., 1986. Corn earworm infestation of 7 maize cultivars and control in south-western Nigeria. Insect Sci. Appl. 7:49-52.
 Darrah, L. L., 1986. Evaluation of population improvement in the Kenya maize breeding methods study. Pp. 160-175 in To Feed Ourselves: A Proceedings of the First Eastern, Central, and Southern Africa Regional Maize Workshop, Luska, Zambia, 10-17 March 1985, G. Gelaw, ed., CIMMYT, Workson, P. S. Mexico, D.F.
- Mexico, D.F.
 98. Darrah, L. L., Zuber, M. S., 1986. 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci. 26:1109-1113.
 99. Das, S. N., Chowdhury, A. K., Matty, S. S., 1985. Reaction of different maize germplasms on vein enation virus at field conditions of Kalimpong. Environ. Ecol. 3:655-656.
 100. Davis, F. M., Williams, W. P., 1986. Survival, growth and development of southwestern corn borer (<u>Diatraea grandiosella</u>--Lepidoptera: Pyralidae) on resistant and susceptible maize (<u>Zea mays</u>) hybrids. J. Econ. Entomol. 79:847-850.
 101. Dawson, A. J., Hodge, T. P., Isaac, P. G., Leaver, C. J., Lonsdale, D. M., 1986. Location of the genes for cytochrome oxidase subunits I and II, apocytochrome b, alpha-subunit of the F₁ATPase and the ribosomal RNA genes on the mitochondrial genome of maize (<u>Zea mays</u> L.). Curr. Genet. 10:561-564.

- 102. Dawson, A. J., Jones, V. P., Leaver, C. J., 1986. Strategies for the identification and analysis of higher plant mitochondrial genes. Meth. Enzymol. 118: 470-484.
- 103. Day, A. D., Thompson, R. K., Ottman, M. J., 1986. Registration of Arizona arid environment maize germplasm. Crop Sci. 26:390-391.
- 104. Debnath, S. C., Sarkar, K. R., 1986. Genetic architecture for ear and grain characters in maize. Bangladesh J. Bot. 15:1-8. 105. Dennis, E. S., Gerlach, W. L., Peacock, W. J., Schwartz, D., 1986. Excision of the <u>Ds</u> controlling element from the <u>Adhl</u> gene of maize. Maydica
- 31:47-58.
- 106. Derieux, M., Bonhomme, R., Ruget, F., 1985. Environment and yield physiology of maize under temperate conditions. Pp. 13-46 in A. Brandolini Deficux, M., Bonhomme, R., Ruger, F., 1703. Subtroument and J. P. P. Salamini, eds. (which see).
 and F. Salamini, eds. (which see).
 Dewald, C. L., Dayton, R. S., 1985. Registration of gynomonoecious germplasm (GSF-I and GSF-II) of Eastern gamagrass. Crop Sci. 25:715.
 Dewey, R. E., Levings, C. S. III., Timothy, D. H., 1986. Novel recombinations in the maize mitochondrial genome produce a unique transcr unit in the Texas male-sterile cytoplasm. Cell 44:439-449.
- Novel recombinations in the maize mitochondrial genome produce a unique transcriptional
- unit in the Texas male-sterile cytoplasm. Cell 44:439-449.
 109. Dhillon, B. S., Khehra, A. S., Singh, M., 1985. Identification of stress-tolerant management-responsive genotypes. Crop Improv. 12:184-186.
 110. Diem, C. D., Dolinka, S. 1985. The applicability of some parameters in comparative evaluation of phenotypic characters of maize hybrids. Acta Agron. Acad. Sci. Hung. 34:336-342.
- 111. Dieu, P., Beckert, M., 1986. Further studies of androgenetic embryo production and plant regeneration from in vitro cultured anthers in maize (Zea mays L.). Maydica 31:245-260.
- Li2, DiFonzo, N. D., Manzocchi, L., Salamini, F., Soave, C., 1986. Purification and properties of an endospermic protein of maize associated with the <u>opaque-2</u> and <u>opaque-6</u> genes. Planta 167:587-594.
 Doebley, J. F., Goodman, M. M., Stuber, G. W., 1986. Exceptional genetic divergence of northern flint corn. Am. J. Bot. 73:64-69.
 Dobbeer, R. A., Woronecki, F. F., Stehn, R. A., 1986. Blackbird-resistant hybrid corn reduces damage but does not increase yield. Wildlife Soc. Bull. 14:298-301.
- 115. Dolbeer, R. A., Woronecki, P. P., Stehn, R. A., 1986. Resistance of sweet corn to damage by blackbirds and starlings. J. Amer. Soc. Hort. Sci. 111:306-311.

- 111:306-311.
 116. Dooner, H. K., 1986. Genetic fine structure of the <u>bronze</u> locus in maize. Genetics 113:1021-1036.
 117. Dooner, H. K., English, J., Ralston, E., Weck, E., 1986. A single genetic unit specifies two transposition functions in the maize element <u>Activator</u>. Science 234:210-211.
 118. Dooner, H. K., Kermicle, J. L., 1986. The transposable element <u>Ds</u> affects the pattern of intragenic recombination at the <u>bz</u> and <u>R</u> loci in maize. Genetics 113:135-143.
- 119. Doring, H.-P., Starlinger, P., 1986. Molecular genetics of transposable elements in plants. Ann. Rev. Genetics 20:175-200.

Dormann-Przybyl, D., Strittmatter, G., Kossel, H., 1986. The region distal to the rRNA operon from chloroplasts of maize contains genes coding for tRNA^{ASR}(ACG) and tRNA^{ASR}(GUU). Plant Mol. Biol. 7:419-431.
 Doyle, G. G., 1986. The allotetraploidization of maize. 4. Cytological and genetic evidence indicative of substantial progress. Theor. Appl.

Genet. 71:585-594.

Draganic, M., Levic, J., 1984. Variance components and regression analysis for maize root resistance to <u>Fusarium culmorum</u> and <u>Fusarium</u> <u>sportrichoides</u> var. tricinctum. Savrem. Poljopr, 32:279-287.
 Dunwell, J. M., 1985. Embryogenesis from pollen in vitro. Pp. 49-78 in Biotechnology in Plant Science, M. Zaitlin et al., eds., Academic Press,

Orlando.

124. Durbey, S. L., Sarup, P., 1984. Biological parameters related to antibiosis mechanism of resistance in maize varieties to Chilo partellus. J. Entomol. Res. 8:140-147. Intromotive, D. N., 1985. State of temperate maize breeding programs. Pp. 293-310 in A. Brandolini and F. Salamini, eds. (which see).
 125. Duvick, D. N., 1986. Flant breeding: past achievements and expectations for the future. Econ. Bot. 40:289-297.
 127. Duvick, D. N., 1986. The nobility of seed research and its critics. The World & I (7):275-281.
 128. Dwyer, L. M., Stewart, D. W., 1986. Leaf area development in field-grown maize. Agron. J. 78:334-343.
 129. Echeverria, E., Boyer, C. D., 1986. Localization of starch biosynthetic and degradative enzymes in maize leaves. Amer. J. Bot. 7.
 130. Echeverria, E. Wurpherer, T. 1985. Cluster of starch of supress of the starce started in the starce of the basis.

Amer. J. Bot. 73:167-171.

Echeverria, E., Humphreys, T., 1985. Glucose control of sucrose synthase in the maize scutellum. Phytochemistry 24:2851-2856.
 Eckenrode, V. K., Levings, C. S. III., 1986. Maize mitochondrial genes. In Vitro Cell. Develop. Biol. 22:169-176.
 Edwards, R., Owen, W. J., 1986. Comparison of glutathione S-transferases of Zea mays responsible for herbicide detoxification in plants and suspension-cultured cells. Planta 169:208-215.

133. Efron, Y., 1985. Use of temperate and tropical germplasm for maize breeding in the tropical area of Africa. Pp. 105-131 in A. Brandolini and F. Salamini, eds. (which see). 134. Elman, G. J., 1985. In test case Patent and Trademark Office Board of Patent Appeals and Interferences extends Chakrabarty decision to seeds,

plants and plant tissue cultures. Patent to be granted to molecular genetics research and development partnership for new corn seeds and plants having high tryptophan levels. Biotechnol. Law Rep. 4:336-338.
 135. Elrahman, N. A., Bourdu, R., 1986. The effect of seed size and shape on early development in maize (French). Agronomie 6:181-186.
 136. Engeman, R. M., Samedy, J. P., Bornstein, M. S., Mitchell, G. C., 1985. A comparison of bird damage among 11 varieties of corn in Haiti. J. Agr. Univ. P. R. 69:291-296.

137. Enomoto, S.-I., Ogihara, Y., Tsunewaki, K., 1985. Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA.

I. Phylogenetic relationships among ten cereals revealed by the restriction fragment patterns of chloroplast DNA. Jpn. J. Genet. 60:411-424.
138. Erygina, E. P., Shcherbak, V. S., 1985. Introgression of some <u>Tripsacum</u> traits into the <u>Zea</u> genome by distant hybridization of these genera. Genetika SSSR 21:2011-2016.

Generica SSAK 212011-2010. 139. Escote, L. J., Gabay-Laughnan, S. J., Laughnan, J. R., 1985. Cytoplasmic reversion to fertility in <u>cms-S</u> maize need not involve loss of linear mitochondrial plasmids. Plasmid 14:264-267.

140. Esen, A., 1986. Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol. 80:623-627.

141. Eskins, K., McCarthy, S. A., Dybas, L., Duysen, M., 1986. Corn chloroplast development in weak fluence rate red light and in weak fluence rate red plus far-red light. Physiol. Plant. 67:242-246.
 142. Evola, S. V., Burr, F. A., Burr, B., 1986. The suitability of restriction fragment length polymorphisms as genetic markers in maize. Theor. Appl. Genet. 71:765-771.

143. Falsey, J. W., Reed, J. N., Readdy, T. L., Pace, G. M., 1986. Somatic embryogenesis from three commercially important inbreds of Zea mays. Plant Cell Rep. 5:35-38.

144. . Pajemisin, J. M., Efron, Y., Kim, S. K., Khadr, F. H., Dabrowski, Z. T., Mareck, J., Bjarnason, M., Parkinson, V., Everett, L. A., Diallo, A. O., 1985. Population and varietal development in maize for tropical Africa through resistance breeding approach. Pp. 385-407 in A. Brandolini and F. Salamini, eds. (which sec).

145. Fajemisin, J. M., Kim, S. K., Efron, Y., Alam, M. S., 1984. Breeding for durable disease resistance in tropical maize with special reference to maize streak virus. Pp. 49-71 in Breeding for Durable Disease and Pest Resistance, FAO, Rome Italy. 146. Fakorede, M. A. B., Opeke, B. O., 1986. Environmental indices for the analysis of genotype-X environment interaction in maize. Maydica 31:233-

244.

Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. ASAE 28:1794-1797.
 Hausey, N. R., Vantoai, T. T., Mcdonald, M. B., 1985. Response of 10 corn cultivars to flooding. Trans. AsaE 28:1794-1797.
 Hausey, N. R., Natoai, T. T., Natoai, T. T., Natoai, T. T. Kataa, T. Kataa,

149. Ferrao, R. G., Silva, J. C., Cruz, C. D., 1985. Evaluation of the combining ability of eight lines of corn in an unbalanced diallel system. Rev. Ceres 32:283-292.

Nev. Ceres 32:283-292.
150. Filev, D. S., Kotsyuban, A. I., 1985. Methods for increasing the productivity of parental forms of hybrid corn. Dokl. Vses. Ordena Lenina Ordena Trud. Krasnogo Znameni Akad. S.-Kh. Nauk Im. V. I. Lenina (11):3-6.
151. Fincher, R. R., Darrah, L. L., Zuber, M. S., 1985. Root development in maize as measured by vertical pulling resistance. Maydica 30:383-394.
152. Finnegan, P. M., Brown, G. G., 1986. Autonomously replicating RNA in mitochondria of maize plants with S-type cytoplasm. Proc. Nat. Acad. Sci. Vertical Science. Nat. Acad. Sci. USA 83:5175-5179.

153. Fish, L. E., Bogorad, L., 1986. Identification and analysis of the maize P700 chlorophyll a apoproteins PSI-Al and PSI-A2 by high pressure

 154. Flavil, R. B., 1965. Repetitive DNA and charaysis of the maize rolo chlorophyli a apoproteins PSI-AL and PSI-AL by high pressure liquid chromatography analysis and partial sequence determination. J. Biol. Chem. 261:8134-8139.
 154. Flavell, R. B., 1985. Repetitive DNA and chromosome evolution in plants. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 312:227-242.
 155. Fraj, M., Compton, W. A., 1986. Feasibility of mass selection for stalk rot resistance in maize. Maydica 31:261-268.
 156. Frei, O. M., Stuber, C. W., Goodman, M. M., 1986. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop Sci. 26:37-42.

157. Frei, O. M., Stuber, C. W., Goodman, M. M., 1986. Yield manipulation from selection on allozyme genotypes in a composite of elite corn lines. Crop Sci. 26:917-921.

158. Freire, E. C., Paterniani, E., 1986. Selection between and within half-sib families in the maize population ESALQ-VD2-S182, under winter culture conditions. Rev. Brasil. Genetica 9:459-466.

conditions. Rev. Brasil. Genetica 9:459-466.
159. Froum, M. E., Taylor, L. P., Walbot, V., 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319:791-793.
160. Frova, C., Binelli, G., Ottaviano, E., 1985. Male gametophyte response to high temperature in maize. Pp. 33-38 in Biotechnology and Ecology of Pollen, D. L. Mulcahy et al., eds., Springer-Verlag, New York.
161. Gabedava, L. Sh., 1985. A comparative electron microscopic study of the mother cell in maize with the Moldavian and the Texas types of cytoplasmic male sterility. Izv. Akad. Nauk Gruz. SSR Ser. Biol. 11(6):375-378.

162. Gainy, R., Okon, Y., Kapulnik, Y., Fischer, M., 1986. Adsorption of <u>Azospirillum brasilense</u> to corn roots. Soil Biol. Biochem. 18:69-75.
 163. Gaiili, G., Kawata, E. E., Cuellar, R. E., Smith, L. D., Larkins, B. A., 1986. Synthetic oligonucleotide tails inhibit <u>in vitro</u> and <u>in vivo</u> translation of SP6 transcripts of maize zein cDNA clones. Nucl. Acid. Res. 14:1511-1524.

164. Galinat, W. C., 1985. Teosinite, the ancestor of maize: Perapectives for its use in maize breeding for the tropics. Pp. 1-11 in A. Brandolini and F. Salamini, eds. (which see).
165. Gama, E. E. G. E., Vlanna, R. T., Filho, V. N., Magnavaca, R., 1985. Inbreeding depression effects in advanced generations of 4 genetic types of maize hybrids. Pesq. Agrop. Brasil. 20:1293-1300.
166. Gandin, C. L., Diaz, M. E. G., Canton, T., Zanini Neto, J. A., 1985. Agronomic characteristics of maize EMPASC-151-Conda and EMPASC-152-Oeste cultivars. Pesq. Agrop. Bras. 20:793-798.

167. Garcia-G, J. Co., Marquez-S, F., 1984. Comparison of 3 techniques for mass selection in an early composite of maize. Agrociencia (58):45-58. 168. Gardner, B. R., Blad, B. L., Wilson, G. D., 1986. Characterizing corn hybrid moisture stress sensitivity using canopy temperature measurements.

105. Garaner, B. K., Blad, B. L., Wilson, G. D., 1955. Characterizing corn hybrid molecure stress sensitivity using canopy temperature measurements. Remote Sens. Environ. 19:207-211.
 169. Gatenby, A. A., Cuellar, R. E., 1985. Antitermination is required for readthrough transcription of the maize <u>rbcL</u> gene by a bacteriophage promoter in <u>Bacherichia coli</u>. Eur. J. Biochem. 153:355-359.
 170. Gatenby, A. A., Rothetein, S. J., 1986. Synthesis of maize chloroplast ATP-synthase beta-subunit fusion proteins in <u>Escherichia coli</u> and binding to the inner membrane. Gene 41:241-246.

to the inner membrane. Gene 41:241-240. 171. Gavazzi, G., Viani, I., Jacomini, E., Helm, B., 1986. The genetics of <u>Sn</u>, a factor responsible for tissue-specific anthocyanin formation in the maize plant. Pp. 91-103 in G. M. Reddy and E. H. Coe, Jr., eds. (which see). 172. Gendloff, E. H., Rossman, E. C., Casale, W. L., Isleib, T. G., Hart, L. P., 1986. Components of resistance to Fusarium ear rot in field corn. Phytopathology 75:684-688.

173. Gengenbach, B. G., Rines, H. W., 1986. Use of phytotoxins in selection of disease resistant mutants in tissue culture. Iowa State J. Res. 60:449-476.

Gentinetta, E., Ceppi, D., Lepori, C., Perico, G., Motto, M., Salamini, F., 1986. A major gene for delayed senescence in maize--pattern of photosynthates accumulation and inheritance. Plant Breed. 97:193-203.
 Girardin, P., Jordan, M.-O., Picard, D., Trendel, R., 1986. Harmonization of terms used for the morphological description of maize. Agronomie

6:873-875. 176. Goldsbrough, P. B., Gelvin, S. B., Larkins, B. A., 1986. Expression of maize zein genes in transformed sunflower cells. Mol. Gen. Genet.

202:374-381.

177. Golubovskaya, I. N., Distanova, E. E., 1986. Locating the mei gene ms43 by B-A translocations in maize. Genetika SSSR 22:1173-1180.
 178. Golynskaya, E. L., 1985. Specific interaction of pistil lectins with simple sugars in corn lines and hybrids. Sov. Plant Physiol. 32:608-615 (Fiziol. Rast. 32:786-794).

179. Gonzalez-H, V. A., Ortiz-C, J., Mendoza-O, L. E., 1984. Yield of maize and its components in response to differing cultivation practices and selection criteria. Agrociencia (58):101-112. 180. Goodman, M. M., 1985. Exotic maize geruplasm: Status, prospects, and remedies. Iowa State J. Res. 59:497-529. 181. Goodman, M. M., 1985. Use of tropical and subtropical maize and teosinte geruplasm in temperate conditions. Pp. 93-103 in A. Brandolini and F.

Salamini, eds. (which see). 182. Gorinstein, S., Quicke, G. V., Phillips, A. M., 1986. Detection of low molecular weight reduced zein polypeptides separated by polyacrylamide gel electrophoresis. J. Food Sci. 51:1366-1367.

183 Gracen, V 39:127-172. V. E., 1986. Sources of temperate maize germplasm and potential usefulness in tropical and subtropical environments. Adv. Agron.

184. Gracen, V. B., Jr., Guthrie, W. D., 1986. Host plant resistance for insect control in some important crop plants. Crit. Rev. Plant Sci. 4:277-291.

185. Gracen, V. E., Sisco, P. H., Bouthyette, P., 1986. LBN cytoplasm. U.S. Patent 4569152. Off. Gaz. U. S. Pat. Trademark Off. Pat. 1063 (2):549.
 186. Grand, C., Parmentier, P., Boudet, A., Boudet, A. M., 1985. Comparison of Lignins and of enzymes involved in Lignification in normal and brown midrib (<u>bm3</u>) mutant corn seedlings. Physiol. Veg. 23:905-911.

187. Graves, A. C. F., Goldman, S. L., 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens: detection of T-DNA specific enzyme activities. Plant Mol. Biol. 7:43-50. 188. Greenberg, J. M., Setter, T. L., 1986. Growth and [¹⁴C] sucrose uptake of apical and basal maize kernels. Can. J. Plant Sci. 66:863-870.

189. Grellet, F., Delcasso, D., Panabieres, F., Delseny, M., 1986. Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J. Mol. Biol. 187:495-508.

190. Grigorenko, N. V., Vasilchenko, V. F., Merezhinsky, Y. G., Morgun, V. V., Logvinenko, V. F., Sharmankin, S. V., 1986. Cytogenetic activity of herbicide Treflam and its metabolites which affect the maize seeds. Tsitol. Genet. 20:294-298.

191. Grimsley, N., Hohn, T., Davies, J. W., Hohn, B., 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177-179.

192. Groot, J. J. R., Kropff, M. J., Vossen, F. J. H., Spitters, C. J. T., Rabinge, R., 1986. A decimal code for the developmental stages of maize and its relation to accumulated heat units. Neth. J. Agr. Sci. 34:67-73.

and its relation to accumulated heat units. Neth. J. Agt. Sci. 34:50-73. 193. Gu, M. G., 1986. Cytogenetic stability and variability of calli and cell clones originated from maize pollen and their regenerated plants. Pp. 79-90 in Haploids of Higher Plants. In Vitro, H. Han and Y. Hongyuan, eds., China Academic Publ., Beijing. 194. Gulati, A., Mandahar, C. L., 1986. Host-parasite relationship in <u>Helminthosporium turcicum-Zea mays</u> complex: Involvement of cytokinin-like substances in pathogenesis. Indian J. Exp. Biol. 24:309-314.

195. Gunasekaran, S., Paulsen, M. R., Shove, G. C., 1986. A laser optical method for detecting corn kernel defects. Trans. ASAE 29:294-298. 196. Guo, P., Gardner, G. O., Obaidi, M., 1986. Genetic variations and gene effects controlling prolificacy and other traits in corn (Zea mays). Acta Genet. Sin. 13:35-42.

197. Guthrie, W. D., Darmalingam, S., Jarvis, J. L., Kindler, D., Atkins, R. E., Tseng, C. T., Zhou, D., 1985. Resistance of sorghum (Sorghum bicolor) genotypes to leaf feeding by first-generation European corn borer (Ostrinia nubilalis) larvae compared with maize (Zea mays) genotypes. J. Agric, Entomol. 2:175-184.

bicolor) genotypes to leaf feeding by first-generation European corn borer (Ostrinia nubilalis) larvae compared with maize (Zea mays) genotypes. J. Agric. Entomol. 2:175-184.
198. Guthrie, W. D., Tseng, C. T., Russell, W. A., Coats, J. R., Robbins, J. C., Tollefson, J. J., 1986. DIMBOA content at seven stages of plant development in a maize synthetic cultivar. J. Kans. Entomol. Soc. 59:356-360.
199. Gutterrez-Gaitan, M. A., Cortez-mendoza, H., Wathika, E. N., Gardner, C. O., Oyervides-Garcia, M., Mallauer, A. R., Darrah, L. L., 1986. Testcross evaluation of Mexican maize populations. Crop Sci. 26:199-104.
200. Hagemann, R., Lindenhahn, M. M., Metzlaff, M., 1985. Extranuclear inheritance: Plastid genetics. Prog. Bot. 47:208-227.
201. Hainzelin, E. M., Marchand, J. L., 1986. Registration of IRAT-297 maize germplasm. Crop Sci. 26:1090-1091.
202. Hake, S., Freeling, M., 1966. Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent mesophyll cells. Nature 320:621-623.
203. Hall, P. J., Bandurski, R. S., 1986. [H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue. Plant Physiol. 80:374-377.

80:374-377.

b):3/4-3/7.
 204. Hallauer, A. R., 1985. Breeding methodologies for temperate maize. Pp. 159-176 in A. Brandolini and F. Salamini, eds. (which see).
 205. Hallauer, A. R., 1986. Registration of BS26 maize germplasm. Crop Sci. 26:838-839.
 206. Hallauer, A. R., Russell, W. A., 1986. Registration of BS18 maize germplasm. Crop Sci. 26:838.
 207. Hamaker, B. R., Kirleis, A. W., Mertz, E. T., Axtell, J. D., 1986. Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. J. Agr. Food Chem. 34:647-649.
 208. Berne, T. K. Warter, B. R. M. Barter, B. A. W., Mertz, E. T., Axtell, J. D., 1986. Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. J. Agr. Food Chem. 34:647-649.

208. Hamm, J. J., Wiseman, B. R., 1986. Plant resistance and nuclear polyhedrosis for suppression of the fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 69:541-548.

209. Hanft, J. M., Jones, R. J., 1986. Kernel abortion in maize. I. Carbohydrate concentration patterns and acid invertase activity of maize kernels induced to abort in vitro. Plant Physiol. 81:503-510. 210. Hanft, J. M., Jones, R. J., 1986. Kernel abortion in maize. II. Distribution of ¹⁴C among kernel carbohydrates. Plant Physiol. 81:511-515.

Manart, J. H., Jones, K. J., 1900. Mernel abortion in maize. II. Distribution of "C among kernel carbohydrates. Plant Physiol. 81:511-515.
 Hanft, J. M., Jones, R. J., Stumme, A. B., 1986. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear positions. Crop Sci. 26:568-572.
 Hansen, M., Busch, L., Burkhardt, J., Lacy, W. B., Lacy, L. R., 1986. Plant breeding and biotechnology. New technologies raise important social questions. Bioscience 36:29-39.

213. Hanson, M. R., Boeshore, M. L., McClean, F. E., O'Connell, M. A., Nivison, H. T., 1986. The isolation of mitochondria and mitochondrial DNA. Meth. Enzymol. 118:437-452.

214. Hanson, M. R., Conde, M. F., 1985. Functioning and variation of cytoplasmic genomes: Lessons from cytoplasmic-nuclear interactions affecting

 Manson, M. K., Conde, M. F., 1963. Functioning and variation of cytoplasmic genomes: Lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int. Rev. Cytol. 94:213-267.
 Hanson, W. D., Moll, R. H., 1986. An analysis of changes in dominance-associated gene effects under intrapopulation and interpopulation election in maize. Crop Sci. 26:268-273.
 Hanson, F. S., Dankov, T. G., 1986. The effect of cytoplasmal type on protein and oil content in maize grain. Genet. Sel. 19:23-27.
 Hardacre, A. K., Eagles, H. A., 1986. Comparative temperature response of corn belt dent and corn belt dent x Pool-5 maize hybrids. Crop Sci. 26:100-1012 26:1009-1012.

218. Harpster, M. H., Taylor, W. C., 1986. Maize phosphoenolpyruvate carboxylase. Cloning and characterization of mRNAs encoding isozymic forms. J. Biol. Chem 261:6132-6136.

219. Hawes, M. C., Pueppke, S. G., 1986. Sloughed peripheral root cap cells: yield from different species and callus formation from single cells. Am. J. Bot. 73:1466-1473.

220. Heidecker, G., Messing, J., 1986. Structural analysis of plant genes. Ann. Rev. Plant Physiol. 37:439-466. Heidecker, G., Meesing, J., 1986. Structural analysis of plant genes. Ann. Rev. Plant Physiol. 37:439-466.
 Helentjaris, T., Slocum, N., Wright, S., Schaefer, A., Nienhuis, J., 1986. Construction of genetic maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72:761-769.
 Helentjaris, T., Weber, D. F., Wright, S., 1986. Use of monosomics to map cloned DNA fragments in maize. Proc. Nat. Acad. Sci. 83:6035-6039.
 Hernandez-L, A., Carballo-C, A., 1984. Characterization of maize genotypes of high valleys according to heat unit requirements. Rev. Chapingo

9:42-48.

Healop-Harrison, J. S., Reger, B. J., 1986. X-ray microprobe mapping of certain elements in the ovary of Zes mays L. Ann. Bot. 57:819-822.
 Hibberd, K. A., Anderson, P. C., Barker, M., 1986. Tryptophan overproducer mutants of cereal crops, U.S. Patent 4581847. Off. Gaz. U. S. Pat. Trademark Off. Pat. 1065.

Prademark Off. Fat. 1005.
 Pat. 1005.
 Pat. 1005.
 Publ. AE-4608, Agricultural Experiment Station, University of Illinois.
 Hirasawa, E., Suzuki, Y., 1985. Occurrence of spermine in chromatin of Zea mays. Plant Growth Regul. 3:239-246.
 Bard, K. G., Crosbie, T. M., 1986. Correlated changes in agronomic traits from Sl-line recurrent selection for cold tolerance in 2 maize populations. Grop Sci. 26:519-522.
 Correlated C. G. Corbie, T. M., 1986.

populations. Grop Sci. 20:319-322.
229. Hoard, K. G., Croabie, T. M., 1986. Effects of recurrent selection for cold tolerance on genotype-environment interactions for cold tolerance and agronomic traits in 2 maize populations. Grop Sci. 26:238-242.
230. Hodges, T. K., Kamo, K. K., Becwar, M. R., Schroll, S., 1985. Regeneration of maize. Pp. 15-33 in Biotechnology in Plant Science, M. Zaitlin et al., eds., Academic Press, Orlando.

231. Hodges, T. K., Kamo, K. K., Imbrie, C. W., Becwar, M. R., 1986. Genotype specificity of somatic embryogenesis and regeneration in maize. Technology 4:219-223.

232. Hoppe, D. C., McCully, M. E., Wenzel, C. L., 1986. The nodal roots of <u>Zea</u>: their development in relation to structural features of the stem. Can. J. Bot. 64:2524-2547.

Borner, E. S., 1986. Effects of selection for S2 progeny versus testcross performance in corn. Proc. Annu. Corn Sorghum Res. Conf. 40:142-150.
 Bouchins, J. P., Ginsburg, H., Rohrbaugh, M., Dale, R. M. K., Schardl, C. L., Hodge, T. P., Lonsdale, D. M., 1986. DNA sequence analysis of a 5.27-kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria. EMBO J. 5:2781-2788.

235. Hristov, K., Hristova, P., 1986. Mutation breeding in maize. III. Heterosis and its components in a mutant x initial line hybrid. Genet. Sel. 19:279-287.

236. Buang, D., Scandalios, J. G., Skadsen, R. W., Tsaftaris, A. S., 1986. Non-coordinate genetic alterations in the expression of catalase and other glyoxysomal enzymes during maize development. J. Exp. Bot. 37:1189-1200.
 237. Hudspeth, R. L., Glackin, C. A., Bonner, J., Grula, J. W., 1986. Genomic and cDNA clones for maize phosphoenolpyruvate carboxylase and pyruvate,orthophosphate dikinase: Expression of different gene-family members in leaves and roots. Proc. Nat. Acad. Sci. USA 83:2884-2888.

- Hunter, R. B., Atlin, G. N., Muldoon, J. F., 1986. Genotype x environment interactions for ear mold resistance and its subcomponents in maize hybrids. Can. J. Plant Sci. 66:291-297.
 Iltis, H. H., Doebley, J. F., 1984. Zea-A biosystematical odyssey. Pp. 587-616 in Plant Biosystematics, Academic Press, Canada.
- 240. Iltis, H. H., Kolterman, D. A., Benz, B. F., 1986. Accurate documentation of germplasm: the lost Guatemalan teosintes (Zea, Gramineae). Econ. Bot. 40:69-77.
- 241. Imbrie-Milligan, C. W., Hodges, T. K., 1986. Microcallus formation from maize protoplasts prepared from embryogenic callus. Planta 168:395-401. 242. Iriarte, T. C., Marquez-S, F., 1984. Improvement of maize in Bolivia through mass selection and combined selection of half sibs. Agrociencia (58):191-203.
- Isaac, P. G., Brennicke, A., Dunbar, S. M., Leaver, C. J., 1985. The mitochondrial genome of fertile maize (Zea mays L.) contains two copies of the gene encoding the alpha subunit of the F, -ATPase. Curr. Genetics 10:321-328.
 Ivakhnenko, A. N., Borisov, V. N., 1986. Diallel analysis of combining ability in early ripening maize lines used to reveal the donors of resistance to fusariosis. S.-Kh. Biol. (2):57-60.
- 245. Izui, K., Ishijima, S., Yamaguchi, Y., Katagiri, F., Murata, T., Shigesada, K., Sugiyama, T., Katsuki, H., 1986. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C⁴-pathway from maize. Nucl. Acid Res. 14:1615-1628.
- 246. Janistyn, B., 1986. Effects of adenosine-3':5'-monophosphate (cAMP) on the activity of soluble protein kinases in maize (Zea mays) coleoptile homogenates. Z. Naturforsch. 41:579-584. 247. Jarvis, J. L., Guthrie, W. D., Robbins, J. C., 1986. Yield losses from second-generation European corn borers (Lepidoptera: Pyralidae) in long-
- Jarvis, J. L., Guthrie, W. D., Robbins, J. C., 1986. Yield losses from second-generation European corn borers (Lepidoptera: Pyralidae) in long season maize hybrids planted early compared with short-season hybrids planted late. J. Econ. Entomol. 79:243-246.
 Jarvis, J. L., Ziegler, K. E., Guthrie, W. D., 1986. European corn borer (Lepidoptera: Pyralidae): Yield losses and damage in popcorn in relation to hybrid and stage of plant development. J. Econ. Entomol. 79:764-768.
 Jarvis, J., K., Arturi, M.-J., 1986. Comparative study of the canopy and yield in inbred lines of maize differing in photosynthetic activity and in their derived populations. C. R. Acad. Sci. Ser. III-Vie 303:595-600.
 Jensen, S. D., Gavalieri, A. J., 1983. Drought intolerance in U.S. maize. Agric. Water Manage. 7:1-3.
 Jepson, R. G., Crookston, R. K., 1986. Effect of elevated growing-point temperature on maize growth and yield. Crop Sci. 26:595-598.
 Jiayang, L., Jigeng, L., 1986. Chloroplast thylakoid membrane polypeptides and cytoplasmic male sterility. Curr. Genet. 10:947-950.
 Jin, H.-F., 1986. A comparative study on morphology and ATPase activities of maize hybrid and its parents during early embryogeny. Acta Bot. Sin. 28:161-168.

- 253. Jin, H.-F., 1986. Sin. 28:161-168.
- 254. Johnson, E. C., Fischer, K. S., Edmeades, G. O., Palmer, A. F. E., 1986. Recurrent selection for reduced plant height in lowland tropical maize. Crop Sci. 26:253-260.
- 255. Johnson, J. C., Jr., Monson, W. G., Pettigrew, W. T., 1985. Variation in nutritive value of corn hybrids for silage. Nutr. Rep. Int. 32:953-958.
- 256. Johri, M. M., Coe, E. H., Jr., 1986. The development of corn plant. Pp. 175-180 in G. M. Reddy and E. H. Coe, Jr., eds. (which see). 257. Jones, C. A., 1985. C₄ Grasses and Cereals: Growth, Development and Stress Response. New York: John Wiley & Sons. 258. Juguet, M., Derleux, M., Duburcq, J. B., 1986. Variations in the stage of development of leaf and root systems in maize seed (French).
- Juguet, M., Derfeux, M., Duburcq, J. B., 1986. Variations in the stage of development of leaf and root systems in maize seed (French). Agronomic 6:299-304.
 Kahler, A. L., 1986. Associations between enzyme marker loci and agronomic traits in maize. Proc. Annu. Corn Sorghum Res. Conf. 40:66-89.
 Kahler, A. L., Hallauer, A. R., Gardner, C. O., 1986. Allozyme polymorphisms within and among open-pollinated and adapted exotic populations of maize. Theor. Appl. Genet. 72:592-601.
 Kahler, A. L., Wehrtshan, C. F., 1986. Associations between quantitative traits and enzyme loci in the F2 population of a maize hybrid. Theor. Appl. Genet. 72:15-26.
 Kalman, L., Pinter, L., Pinter, Z., 1985. Comparative study on major agronomic characteristics of male fertile normal and cytoplasmic male sterile analogs in maize (Zem mays). Acta Agron. Acad. Sci. Hung. 34:128-134.
 Kano, K. K., Becwar, M. R., Hodges, T. K., 1985. Regeneration of Zem mays L. from embryogenic callus. Bot. Gaz. 146:927-334.
 Kano, K. K., Hodges, T. K., 1986. Establishment and characterization of long-term embryogenic maize callus and cell suspension cultures. Plant Sci. 45:111-117.

- Sc1. 45:111-117.

- Sci. 45:111-117.
 265. Kang, M. S., 1985. SAS program for calculating stability-variance parameters. J. Hered. 76:142-143.
 266. Kang, M. S., 1986. Update on the stability-variance parameter program. J. Hered. 77:480.
 267. Kang, M. S., Zuber, M. S., Colbert, T. R., Horrocks, R. D., 1986. Effects of certain agronomic traits on and relationship between rates of grain-moisture reduction and grain fill during the filling period in maize. Field Crop Res. 14:339-348.
 268. Kantolic, A., Carceller, M. S., 1985. Use of proline requiring mutants in the study of growth and drought resistance of maize seedlings. Maydica 30:353-360.

- Maydica 30:353-360.
 269. Katsantonis, N., Gagianas, A., Sfakianakis, J., Fotiadis, N., 1986. Inheritance of duration and rate of grain filling and their relationship to grain yield in maize. 2. Pflanzenzucht.-J. Plant Breed. 96:115-121.
 270. Kaur, G. P., Dhillon, M., Dhillon, B. S., 1985. Agronomic and anatomical characters in relation to cold-tolerance and grain yield in a maize composite. Proc. Indian Natl. Sci. Acad., Part B-Biol. Sci. 51:490-495.
 271. Khao, F. S., Dankov, T. G., 1986. The effect of cytoplasm type on protein and oil content in maize grain. Genet. Sel. 19:23-27.
 272. Khatylyuva, L. U., Shevardnadzye, H. A., Tarutsina, L. A., 1985. Heterosis in hybrids obtained from crossing low inbred lines of a many-eared maize population. Vyestsi Akad. Navuk BSSR Syer. Syel Skahaspad. Navuk (3):22-25.
 273. Khatylyuva, L. U., Tarutsina, L. A., Kapusta, I. B., 1985. Analysis of the effect of genotype and interaction between the genotype and environment on the degree of congruence of observed and predicted characters of double maize hybrids. Vyestsi Akad. Navuk BSSR Syer Byal Navuk (4):21-24.
 274. Kheta, S., Malhi, N. S. Pal, S. S. 1985. Estimation of genetic parameters in an optim-pollinated variaty of maize (Zea maya) cultivar.
- (V. 12. 2. 2. 3. Malhi, N. S., Pal, S. S., 1985. Estimation of genetic parameters in an open-pollinated variety of maize (Zea mays), cultivar Makki-Safed-1. Crop Improv. 12:137-140. Khozina, I. F., Sokolovskaya, I. V., Kuznetsov, L. V., Polin, A. N., 1986. Effect of smut infection on cytokinin activity in corn seedlings. Sov. Plant Physiol. 33:104-109. 274.
- 275.
- Sov. Plant Physici. 35:104-105.
 Safonova, V. T., Golubovskaya, I. N., Gruzdev, A. D., 1986. Ultrastructure of chromosomes in microsporocytes of maize ametotic mutant. Tsitologiya 28:552-554.
 Khuong, N. T., Schubert, I., 1985. Silver staining of nucleolus organizing regions in Zea mays. Caryologia 38:331-334.
 Kim, S. K., Efron, Y., Fajemisin, J. M., Khadr, F. H., 1985. Evolution and progress of hybrid maize project of I.I.T.A. Pp. 367-384 in A. Brandolini and F. Salamini, eds. (which see).
 Which and F. Salamini, eds. (which see).
- Brandolini and F. Salamini, eds. (which see).
 279. Kleezkowski, L. A., Randall, D. A., 1986. Maize leaf adenylate kinase--purification and partial characterization. Plant Physiol. 81:1110-1114.
 280. Klenke, J. R., Russell, W. A., Guthrie, W. D., 1986. Distributions for European corn borer (Lepidoptera: Pyralidae) resistance ratings of S₁ lines from 'BS9' corn. J. Econ. Entomol. 79:1076-1081.
 281. Klenke, J. R., Russell, W. A., Guthrie, W. D., 1986. Grain yield reduction caused by 2nd generation European corn borer in BS9 corn synthetic. Crop Sci. 26:859-863.
 282. Viela Strategie and Str

- 282. Klenke, J. R., Russell, W. A., Guthrie, W. D., 1986. Recurrent selection for resistance to European corn borer in a corn synthetic and correlated effects on agronomic traits. Crop Sci. 26:864-868. 283. Klosgen, R. B., Gierl, A., Schwarz-Sommer, Z., Saedler, H., 1986. Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 203:237-
- 284. Knapp, S. J 72:587-591. S. J., 1986. Confidence intervals for heritability for two-factor mating design single environment linear models. Theor. Appl. Genet.

- Kulson, C. A., 1986. A simplified colorimetric procedure for determination of amylose in maize starches. Cereal Chem. 63:89-92.
 Kolmer, J. A., Leonard, K. J., 1986. Genetic selection and adaptation of <u>Cochliobolus heterostrophus</u> to corn hosts with partial resistance. Phytopathology 76:774-777.
- 287. Komarova, G. E., Miku, V. E., Gynkul, T. N., 1986. Concerning the possible effect of kinins on the photosynthetic apparatus of chlorophyll maize mutants. Izv. Akad. Nauk Mold. SSR Ser Biol. Khim. Nauk (3):20-24. Komives, A. V., Komives, T., Dutka, F., 1985. Effects of thiocarbamate herbicides on the activity of glutathione S-transferase in maize. Cereal Res. Commun. 13:253-257. 288.
- 289. Komives, T., Balazs, M., Komives, V., Dutka, F., 1985. Effects of herbicide antidotes on reduced glutathione content and levels of cytochrome P-450 and glutathione S-transferase in Zea mays L. Pp. 451-454 in Cytochrome P-450, Biochemistry, Biophysics and Induction, ed. by L. Vereczkey & K. Magyar, Akademiai Kiado, Budapest.
 Pp. 451-454 in Cytochrome P-450, Biochemistry, Biophysics and Induction, ed. by L. Vereczkey 6
 Komives, T., Komives, V. A., Balazs, M., Dutka, F., 1985. Role of glutathione-related enzymes in the mode of action of herbicide antidotes. Pp. 1155-1162 in 1985 British Crop Protection Conference-Weeds, Vol. 3, bCCC Publications, Croydon UK.
 Komoszynski, M., Bandurski, R. S., 1986. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays. Plant Physiol. 80:961-964.
 Komorative, M. N. Samellecke, T. C. 1005.

- 292. Kondrat'ev, M. N., Samoilenko, T. G., 1985. Nitrogen reutilization in maize hybrids differing in early ripeness. Izv. Timiryazev S.-Kh. Akad. (4):104-110.
- 293. Konopska-Waliszkiewicz, L., 1986. Aleurone grains. Wiad. Bot. 30:127-138. 294. Kopczynski, C. C., Scandalios, J. G., 1986. Cat-2 gene expression. Developmental control of translatable CAT-2 mRNA levels in maize scutellum. Koncpana Malisanta, J., J. G., 1986. <u>Cat-2</u> gene expression. Developmental control of translatable CAT-2 mRNA levels in maize scutellum Mol. Gen. Genet. 203:185-188.
 Koscielniak, J., Dubert, F., 1985. Physiological indices of productivity of various breeding forms of maize. Part III. Correlations between
- simple morphological features of seedlings and final yield of grain and dry mass in natural conditions of plant vegetation. Acta Agrar. Silvestria Ser. Agrar. 24:35-48.

- 296. Kovacs, A., Pasztor, K., 1984. Inheritance of lysine content by crossing with opaque-2 mutant. Acta Agron. Acad. Sci. Hung. 33:453-460.
- Kovacs, A., Faszor, K., 1904. Inheritance of Tyshe content by crossing with opaque-2 mutant. Acta agron. Acad. Sci. Hung. 55:455-460.
 Kovacs-Schneider, M., Mathe-Gaspar, G., Mathe, P., 1984. Dynamics of accumulation of stored material and change of water content in opaque-2 and normal maize kernels. Acta Agron. Acad. Sci. Hung. 33:397-402.
 Krishnan, H. B., Reeves, C. D., Okita, T. W., 1986. ADP-glucose pyrophosphorylase is encoded by different messenger RNA transcripts in leaf and endosperm of cereals. Plant Physiol. 81:642-645.
- encosperm of cereals. Flant Hysiol. 01:042-043. 299. Kruger, N. J., Hemmingsen, S. M., Dennis, D. T., 1986. Distribution of pyrophosphate:Fructose 6-phosphate phosphotransferase in maize leaves. Plant Physiol. 81:12-16.
- 300. Kumar, D., Sarkar, K. R., 1984. Genotype-environment interaction in determining pollen grain diameter in maize (Zea mays). Indian J. Genet. Plant Breed. 44:476-479.
- 301. Kumar, D., Sarkar, K. R., 1986. Characterization of <u>R-Navajo</u> allele in maize (<u>Zea mays</u>). Indian J. Exp. Biol. 24:270-273.
 302. Kumar, H., Saxena, K. N., 1985. Ovipositional responses of <u>Chilo partellus</u> (Swinhoe) to certain susceptible and resistant maize genotypes. Insect Sci. Appl. 6:331-336. Lamb, B. C., 1985. The relative importance of meiotic gene conversion selection and mutation pressure in population genetics and evolution.
- 303. Lamb, B. C., Genetica 67:39-50.
- 304. Lamkey, K. R., Hallauer, A. R., 1986. Performance of high x high, high x low, and low x low crosses of lines from the BSSS maize synthetic. Crop Sc1. 26:1114-1118.
- Jordy Jord Loring This.
 Jordy Jord Land, P., Frascaroli, E., 1986. Inheritance of protandry in maize (<u>Zea mays</u>) and its relationship to yield. Genet. Agrar. 40:57-64.
 Landi, P., Sanguineti, M. C., 1985. Competition between self and foreign pollen in maize (<u>Zea mays</u> L.) as affected by female sporophyte plant density and silk age. Maydica 30:421-426.
- 307. Langridge, P., Brown, J. W. S., Pintortoro, J. A., Feix, G., Neuhaus, G., Neuhausurl, G., Schweiger, H. G., 1986. Expression of zein genes in

- 307. Langridge, r., brown, J. w. S., Finistoro, J. A., Feix, G., Wednaus, G., Nednaus, G., Schweiger, H. G., 1960. Expression of Zein genes in <u>Acctabularia mediterranea</u>. Eur. J. Cell Biol. 39:257-264.
 308. Lara, F. M., 1984. Resistance of corn genotypes to <u>Spodoptera frugiperda</u> and <u>Heliothis zea</u>. Cientifica 12:77-84.
 309. Lara, F. M., Osuna, J. A., Araujo, S. M. C. D., Banzatto, D. A., 1985. Evaluation of maize genotypes for agronomic characteristics and resistance to the corn earworm (<u>Heliothis zea</u> Lepidoptera Noctuidae). An. Soc. Entomol. Bras. 14:111-120.
 310. Larchenko, E. A., Morgun, V. V., Tkachenko, L. V., Levchenko, T. A., 1986. Mutagenic activity of N-nitroso-ethylenurea in maize. Genetika SSSR 223.842 22:838-842.
- 311. Larson, R. L., Bussard, J. B., 1986. Microsomal flavonoid 3'-monoxygenase from maize seedlings. Plant Physiol. 80:483-486.
- 312. Larson, R. L., Bussard, J. B., Coe, E. H., Jr., 1986. Gene-dependent flavonoid 3'-hydroxylation in maize. Biochem. Genet. 24:615-624. 313. Laurie, D. A., Bennett, M. D., 1985. Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55:307-313.
- 314. Laurie, D. A., Bennett, M. D., 1986. Wheat x maize hybridization. Can. J. Genet. Cytol. 28:313-316.
- 315. Le Court de Billot, M. R., Fourie, A. P., Nel, P. C., 1986. Preliminary studies on the inheritance of atrazine tolerance in maize (Zea mays). S. Afr. J. Plant Soil 3:27-30.
- 316. Leath, S., Pedersen, W. L., 1986. Comparison of near-isogenic maize lines with and without the <u>Htl</u> gene for resistance to four foliar pathogens. Phytopathology 76:108-111.

- Phytopathology 76:108-111.
 317. Leath, S., Pedersen, W. L., 1986. Differences in resistance between maize hybrids with or without the <u>Htl</u> gene when infected with <u>Exmerohilum</u> <u>turcicum</u> Race 2. Phytopathology 76:257-260.
 318. Leath, S., Pedersen, W. L., 1986. Effects of the <u>Ht</u>, <u>Ht2</u> and/or <u>Ht3</u> genes in three maize inbreds on quantitative resistance to <u>Exserohilum</u> <u>turcicum</u> Race 2. Plant Dis. 70:529-531.
 319. Leaver, C. J., Isaac, P. G., Bailey-Serres, J., Small, I. D., Hanson, D. K., Fox, T. D., 1985. Recombination events associated with the cytochrome C oxidase subunit I gene in fertile and cytoplasmic male sterile maize and sorghum. Pp. 111-122 in Achievements and Perspectives of Mitochondrial Research, Vol. II: Biogenesis, E. Quagliariello et al., eds., Elsevier Science Publ.
 320. Legg, D. E., Schenk, T. G., Chiang, H. C., 1986. European corn horer (Lepidoptera: Pyralidae) oviposition preference and survival on sunflower and corn. Environ. Entomol. 15:631-634.
 321. Leake, C. A., Gracen, V. E., Everett, H. L., 1985. A new source of cytoplasmic male sterility in maize induced by the nuclear gene induced.
- 321. Lemke, C. A., Gracen, V. E., Everett, H. L., 1985. A new source of cytoplasmic male sterility in maize induced by the nuclear gene, iojap. Theor. Appl. Genet. 71:481-485.
- 322. Levings, C. S. III., Meints, R. H., 1986. Preparation of maize mitochondrial DNA-protein complex for electron microscopy. Meth. Enzymol. 118:485-487.
- 323. Lillis, M., Freeling, M., 1986. Mu transposons in maize. Trends Genet. 2:183-187.
- 324. Limberg, P., Vig, J. C., 1985. The development of maize (Zea mays L.). Landwirt. Forsch. 38:309-316. 325. Lin, B.-Y., Coe, E. H., Jr., 1986. Monosomy and trisomy induced by the r-xl deletion in maize and associated effects on endosperm development. Can. J. Genet. Cytol. 28:831-834.
- J. Genet. Glob. 20101. 201031-034.
 J. R., 1985. Rapid amplification and fixation of new restriction sites in the ribosomal DNA repeats in the derivatives of a cross between maize and <u>Tripsacum dactyloides</u>. Develop. Genetics 6:101-112.
 J. Loffler, C. M., Salaberry, M. T., Maggio, J. C., 1986. Stability and genetic improvement of maize yield in Argentina. Euphytica 35:449-458.
- M. L., Lantin, M. M., 1985. Genetic effects for nine characters from variety diallel cross of six maize populations. Philipp. J. Crop 328. Logrono, Sci. 10:87-92.
- natural and experimental conditions. Riv. Patol. Veg. 21:121-128.
 330. Loi, N., Osler, R., Snidaro, M., Ardigo, A., Lorenzoni, C., 1986. Tolerance to BYDV (barley yellow dwarf virus) in inbreds and hybrids of maize. Maydica 31:307-
- hayolca 31:307 Jonsdale, D. M., 1986. Viral RNA in mitochondria? Nature 323:299.
 Jonsdale, D. M., Hodge, T. P., Stoehr, P. J., 1986. Analysis of the genome structure of plant mitochondria. Meth. Enzymol. 118:453-469.
 Lopez-H, A., Carballo-C, A, 1984. Selection and evaluation of maize genotypes under limiting conditions to enhance production and adaptability. Agrociencia (58):73-86.
- Jorenzoni, C., Gentinetta, E., Perenzin, M., Mott, M., Maggiore, T., 1986. An evaluation of maize (<u>Zea mays</u>) genotypes for silage use in Northern Italy. Genet. Agrar. 40:37-46.
 Jorenzoni, C., Motto, M., 1985. Breeding methodologies for maize quality improvement. Pp. 277-292 in A. Brandolini and F. Salamini, eds. (which see).
- 336. Louie, R., 1986. Effects of genotype and inoculation protocols on resistance evaluation of maize to maize dwarf mosaic virus strains Phytopathology 76:769-773.
- Loyola-Vargas, V. M., Sanchez de Jimenez, E., 1986. Effect of nitrate, ammonium and glutamine on nitrogen assimilation enzymes during callus growth of maize. J. Plant Physiol. 125:235-242.
 Ludwig, S. R., Pohlman, R. F., Vieira, J., Smith, A. G., Messing, J., 1985. The nucleotide sequence of a mitochondrial replicon from maize.
- Gene 38:131-138.
- Ludwig, S. R., Somers, D. A., Petersen, W. L., Pohlman, R. F., Zarowitz, M. A., Gengenbach, B. G., Messing, J., 1985. High frequency callus formation from maize protoplasts. Theor. Appl. Genet. 71:344-350.
 Lupotto, E., 1986. In vitro culture of isolated somatic embryos of maize (Zea mays L.). Maydica 31:193-201.
- Lupotto, E., 1986. In vitro culture of isolated somatic embryos of maize (Zea mays L.). Maydica 31:193-201.
 Lysikov, V. N., Krivov, N. V., 1985. Unstable macromutation (Cg2) causing an outbreak of hereditary variability. Izv. Akad. Nauk Mold. SSR Ser. Biol. Khim. Nauk (6):39-43.
- 342. Machado, E. C., Furlani, P. R., Hanna, L. G., Camargo, M. B. P. D., Brunini, O., Magalhaes, H. H. S., 1985. Biometrical and physiological characteristics of three maize cultivars. Bragantia 44:283-294.
- 343. Maguire, M. P., 1985. Crossover frequencies within paracentric inversions in maize: the implications for homologue pairing models. Genet. Res. 46:273-278. 344. Maguire, M. P., 1986. The pattern of pairing that is effective for crossing over in complex B-A chromosome rearrangements in maize. III.

- Maguire, M. P., 1986. The pattern of pairing that is effective for crossing over in complex B-A chromosome rearrangements in maize. 111. Possible evidence for pairing centers. Chromosoma 94:71-85.
 Makanjuola, W. A., Odebiyi, J. A., 1985. Postharvest infestation of maize (Zea mays) varieties by <u>Sitophilus zeamais</u>. Biol. Afr. 2:58-68.
 Mahotra, V. V., Khehra, A. S., Dhillon, B. S., 1986. Variability in resistance of local maize germplasm to brown-stripe downy-mildew and its relationship with rainfall in the areas of their adaptation. Indian J. Agr. Sci. 56:387-389.
 Manson, J. C., Liddell, A. D., Leaver, C. J., Murray, K., 1986. A protein specific to mitochondria from S-type male-sterile cytoplasm of maize is encoded by an episomal DNA. EMBO J. 5:2775-2780.
 Manuwoto, S., Scriber, J. M., 1985. Differential effects of nitrogen fertilization of three corn genotypes on biomass and nitrogen utilization hver be conthern accounter (Conderges eridatia).
- Suber, S., Scriber, J. M., 1965. Differential effects of nitrogen fertilization of three corn genotypes on biomass and nitrogen utilization by the southern armyworm (Spodoptera eridania). Agric. Ecosyst. Environ. 14:25-40.
 Manuwoto, S., Scriber, J. M., 1985. Neonate larval survival of European corn borers, <u>Ostrinia nubilalis</u>, on high and low DIMBOA genotypes of maize: effects of light intensity and degree of insect inbreeding. Agr. Ecosyst. Environ. 14:221-236.
 Manzocchi, L., Tonelli, C., Gavazzi, G., DiFonzo, N. D., Soave, C., 1986. Genetic relationship between <u>of</u> and <u>pro-1</u> mutants in maize. Theor. April Conet. 778-781
- 351. Manzocchi, L., Tonell Appl. Genet. 778-781.
- 352. Marchionni, M., Gilbert, W., 1986. The triosephosphate isomerase gene from maize: Introns antedate the plant-snimal divergence. Cell 46:133-141.
- 353. Marechal, L., Guillemaut, P., Grieneberger, J.-M., Jeannin, G., Weil, J.-H., 1986. Sequences of initiator and elongator methionine tRNAs in bean mitochondria: Localization of the corresponding genes on maize and wheat mitochondrial genomes. Plant Mol. Biol. 7:245-253. 354. Marinkovic, B., 1985. Seed quality and its dependence on harvest date in maize hybrids. Arhiv Poljopr. Nauke 46:85-96.

- 355. Marks, M. D., Lindell, J. S., Larkins, B. A., 1985. Nucleotide sequence analysis of zein mRNAs from maize endosperm. J. Biol. Chem. 260:16451-16459.
- 356. Marks, M. D., Lindell, J. S., Larkins, B. A., 1985. Quantitative analysis of the accumulation of zein mRNA during maize endosperm development. J. Biol. Chem. 260:16445-16450.
- J. Biol. Chem. 260:16445-16450.
 357. Marotta, R., Fonziani, G., Motto, M., Hartings, H., Gierl, A., DiFonzo, N. D., Soave, C., Bianchi, A., Salamini, F., 1986. Genetic instability at the ahrunken and waxy loci in the <u>02-m(r)Bg</u> strain of maize. Maydica 31:131-153.
 358. Marquetta, J., 1985. Maize crop improvement: From research to development in the plateaux region of Togo. Agron. Trop. 40:211-216.
 359. Martin, G. C., 1985. Yield physiology of maize under tropical conditions. Pp. 79-92 in A. Brandolini and F. Salamini, eds. (which see).
 360. Martin, I. F., 1986. Maize history corrected. J. Aust. Inst. Agr. Sci. 52:103.
 361. Martineau, B., Taylor, W. C., 1986. Cell-specific photosynthetic gene expression in maize determined using cell separation techniques and hybridization in situ. Plant Physiol. 82:613-618.
 362. Martiniello, P., Lorenzoni, C., 1985. Structure of nucleoli in higher plants by scanning electron microscopy. J. Electron. Microsc. 34:107-112.
 364. Mascarenhas, J. P., Eisenberg, A., Stinson, J. R., Willing, R. P., Pe, M. E., 1985. Genes expressed during pollen development. Pp. 19-23 in Plant Cell/Cell Interactions, J. Sussex, et al., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
 365. Matters, G. L., Scandalios, J. G., 1986. Effect of elevated temperature on catalase and superoxide dismutase during maize development. Differentiation 30:190-196.
 366. Matters, G. L., Scandalios, J. G., 1986. Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase

- 366. Matters, G. L., Scandallos, J. G., 1986. Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize. Biochim. Biophys. Acta 882:29-38.
- 367. Mayfield, S. P., Nelson, T., Taylor, W. C., 1986. The fate of chloroplast proteins during photooxidation in carotenoid-deficient maize leaves. Plant Physiol. 32:760-764.
- 368. Mayfield, S. P., Nelson, T., Taylor, W. C., Malkin, R., 1986. Carotenoid synthesis and pleiotropic effects in carotenoid-deficient seedlings of maize. Planta 169:23-32. 369. McCarty, D. R., Shaw, J. R., Hannah, L. C., 1986. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of
- maize. Proc. Natl. Acad. Sci. USA 83:9099-9103.
 370. McClure, P. R., Omholt, T. E., Pace, G. M., 1986. Anion uptake in maize (Zea mays) cultivar B-73 roots: interactions between chlorate and nitrate. Physiol. Plant. 68:107-112.
- nitrate. Physiol. Plant. 68:107-112. 371. McKnight, G. L., O'Hara, P. J., Parker, M. L., 1986. Nucleotide sequence of the triose phosphate isomerase gene from <u>Aspergillus nidulans</u>: Implications for a differential loss of introns. Cell 46:143-148.
- 372. McMullen, M. D., Hunter, B., Phillips, R. L., Rubenstein, I., 1986. The structure of the maize ribosomal DNA spacer region. Nucl. Acid Res. 14:4953-4968.
- 373. Megalla, S. E., Bakheit, B. R., 1986. Zearalenone accumulation in Zea mays kernels from a sevenline diallel infected with Gibberella zeae. Seed Sci. Technol. 14:383-390.
- 374. Melchinger, A. E., Geiger, H. H., Schnell, F. W., 1985. Reciprocal differences in single-cross hybrids and their F2 and backcross progenies in maize. Maydica 30:395-405.

- maize. Maydica 30:395-405.
 375. Melchinger, A. E., Geiger, H. H., Schnell, F. W., 1986. Epistaeis in maize (Zea mays L.). 1. Comparison of single and 3-way cross hybrids among early flint and dent inbred lines. Maydica 31:179-192.
 376. Melchinger, A. E., Geiger, H. H., Schnell, F. W., 1986. Epistaeis in maize (Zea mays L.). 2. Genetic effects in crosses among early flint and dent inbred lines determined by three methods. Theor. Appl. Genet. 72:231-239.
 377. Mendes, A. F., Farina, M. P. W., Channon, P., Smith, M., 1985. A field evaluation of the differential tolerance to soil acidity of forty-eight South African maize (Zea mays) cultivars. S. Afr. J. Plant Soil 2:215-220.
 378. Merckelbach, A., Doring, H.-P., Starlinger, P., 1986. The aberrant Ds element in the Adhl-2Fl1-Ds2 allele. Maydica 31:109-122.
 379. Michaels, T. E., Andrew, R. H., 1986. Immunochemical analysis of maize endosperm storage proteins. Curr. Topics Plant Biochem. Physiol. 5:209.
 381. Miha, J. A., 1985. Breeding for host plant resistance to maize stem-borers. Insect Sci. Appl. 6:369-377.
 382. Miku, V. E., Antsbor, I. A., 1986. Genetic analysis of id mutants in maize. Izv. Akad. Nauk Mold. SSR Ser. Biol. Khim. Nauk. (2):69-70.
 383. Milinko, I., Gyulavari, O., Kovacs, G., Tatrai, J., 1985. MDMV resistance evaluations of corn hybrids and inbred lines in Hungary. Cereal Res. Commun. 13:413-420.
 384. Milinko, I., Gyulavari, O., Tatra, J., Farady, L., 1984. Maize dwarf mosaic virus resistance of corn hybrids and inbred lines in Hungary. Pp.
- 384. Milnko, I., Gyulavari, O., Tatra, J., Farady, L., 1984. Maize dwarf mosaic virus resistance of corn hybrids and inbred lines in Hungary. Pp. 58-62 in Proceedings of the International Conference on Integrated Plant Protection, Vol. 1, Integrated and Complex Protection of Field Crops., B. Darvas et al. eds., Hungarian Society of Agricultural Sciences, Budapest.
- 385. Mino, M., Inoue, M. Breed. 36:240-247. Inoue, M., 1986. Heterotic viability under the treatment of cycloheximide and 6-methylpurine in germinating maize kernels. Jpn. J.
- 386. Miranda-Filho, J. B. D., 1985. Breeding methodologies for tropical maize. Pp. 177-206 in A. Brandolini and F. Salamini, eds. (which see). 387. Misovic, M. S., 1985. Maize breeding methodologies for environmental stresses. Pp. 207-226 in A. Brandolini and F. Salamini, eds. (which see). 388. Mita, T., Katsumi, M., 1986. Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the <u>d5</u> mutant of <u>Zea mays</u> L. Plant Cell Physiol. 27:651-660.
- Plant Cell Physiol. 27:651-660.
 389. Miura, H., Nakashima, H., Meno, A., Tsuda, C., 1985. Genotype x environment interactions in single cross maize cultivar Pirika-sweet and its parental inbred lines. J. Fac. Agric. Hokkaido Univ. 62:211-221.
 390. Mohanty, B. D., Paul, N. K., Ghosh, P. D., 1986. Chromosomal behaviour in callus culture of Zea mays L. Cytologia 51:37-41.
 391. Molina, M. del C., 1985. Cytogenetic study of a tetraploid hybrid Zea diploperennis x Zea perennis. Cytologia Tokyo 50:643-648.
 392. Monteagudo, A., 1985. Breeding for maize resistance to insects. Pp. 227-242 in A. Brandolini and F. Salamini, eds. (which see).
 393. Moore, R. E., Davies, M. S., O'Connell, K. M., Harding, E. I., Wiegand, R. C., Tiemeier, D. C., 1986. Cloning and expression of a cDNA encoding a maize glutathione-S-transferase in E. coll. Nucl. Acid. Res. 14:7227-7236.
 394. Moore, R., 1986. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays. Amorph. Bat. 57:119-131.

- 394. Moore, R., 1986. A mo Ann. Bot. 57:119-131.
- Ann. Bot. 57:119-131.
 395. Moore, R., 1986. Calcium movement, graviresponsiveness, and the structure of columella cells in primary roots of amylomaize mutants of Zea mays. Am. J. Bot. 73:417-426.
 396. Moore, R., 1986. Cytochemical localization of calcium in cap cells of primary roots of Zea mays. J. Exp. Bot. 37:73-79.
 397. Moore, R., Evans, M. L., 1986. How roots perceive and respond to gravity. Amer. J. Bot. 73:574-587.
 398. Moore, R., Fondren, W. M., Koon, E. C., Wang, C.-L., 1986. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays. J. Exp. Bot. 37:67-68.
 399. Morad, M. M., Iskander, F. Y., Rooney, L. W., Earp, C., 1986. Physico-chemical properties of alkali-cooked corn using traditional and presoaking procedures. Cereal Chem. 63:255-258.
 400. Moreur, V. V., Larchenko, E. A., 1986. Mutagenic activity of exceences DNA and prospects for their use in mutation selection. Tsitol. Genet.

- 400. Morgun, V. V., Larchenko, E. A., 1986. Mutagenic activity of exogenous DNA and prospects for their use in mutation selection. Tsitol. Genet. 20:46-50; Cytol. Genet. 20:50-54.

- 401. Morris, J., Kushner, S. R., Ivarie, R., 1986. The simple repeat poly(dT-dG).(dC-dA) common to eukaryotes is absent from Eubacteria and Archaebacteria and rare in protozoans. Mol. Biol. Evol. 3:343-355.
 402. Mosse, J., Huet, J.-C., Baudet, J., 1986. Evidence from amino acid analysis for the constancy of composition of storage proteins accumulated in maize-seed. J. Plant Physiol. 125:199-206.
 403. Mosz, J., 1986. Determination of breaking strength of maize plants: Forces binding the cob to the plant and the leaf to the cob. Rocz. Nauk Bell. See C. Tarb. Paid. 323
- Roln. Ser. C Tech. Roln. 77:43-53. 404. Mosz, J., Bieniek, J., 1986. Investigations on determining forces binding maize grain to the cob core. Rocz. Nauk Roln. Ser. C Tech. Roln.
- 77:61-70. 405. Mosz, J., Frontczak, J., 1986. Possibilities of determining maize grain hardness with the Vickers' micro-durometer. Rocz. Nauk Roln. Ser. C
- Autor, Koin. //:DJ-60.
 406. Mottley, J., 1985. Comparison of the tissue rates of photosynthesis and respiration in the leaves of different maize cultivars using the oxygen electrode. Cereal Res. Commun. 13:247-252.
 407. Moutor, F., Morot-Caudry, J.-P., Chaillou, S., Lescure, J.-C., Jolivet, E., 1986. Comparative photosynthesis of teosinte and maize. C. R. Acad. Sci. Ser. III-Vie 302:47-51.
 408. Motor-Caudry J. Morot-Caudry J. -P.
- 408. Muller-Neumann, M., Yoder, J. I., Starlinger, P., 1985. Erratum: The DNA sequence of the transposable element Ac of Zea mays L. Mol. Gen. enet. 198-540.

- Genet. 198-540.
 409. Mulligan, R. M., Walbot, V., 1986. Gene expression and recombination in plant mitochondrial genomes. Trends Genet. 2:263-266.
 410. Mundt, C. C., Leonard, K. J., 1986. Effect of host genotype unit area on development of focal epidemice of bean rust and common maize rust in mixtures of resistant and susceptible plants. Phytopathology 76:895-900.
 411. Musgrave, M. E., Antonovics, J., Siedow, J. N., 1986. Is male-sterility in plants related to lack of cyanide-resistant respiration in tissues. Plant Sci. 44:7-11.
 412. Navrotskaya, N. B., Morgun, V. V., Inglik, P. V., Chuchmiy, I. P., Chizmar, B. B., 1984. Experimental mutagenesis in selection of corn for immunity to diseases. Sel. Semenovod. 1:32-33.
 413. Naver A. 1985. immunity to diseases. Sel. Semenovod. 1:32-33. Nawar, A. A., 1985. Improvement of a composite variety of maize by recurrent selection method based on general combination ability. Egypt. J.
- 413. Nawar, A. A., 1985. In Genet. Cytol. 14:1-10.
- 414. Nebiolo, C. M., White, E. M., 1985. Corn mitochondrial protein synthesis in response to heat shock. Plant Physiol. 79:1129-1132.
 415. Neill, S. J., Horgan, R., Parry, A. D., 1986. The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169:87-96.

- 416. Neuffer, M. G., Hoisington, D. A., Walbot, V., Pawar, S. E., 1986. Genetic control of disease symptoms. Pp. 123-134 in G. M. Reddy and E. H. Coe, Jr., eds. (which see). 417. Newhouse, K. E., 1986. Selection and performance of corn hybrids under different tillage systems. Proc. Annu. Corn Sorghum Res. Conf. 40:90-
- 107. 418. Newton, K. J., Coe, E. H., Jr., 1986. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc. Nat. Acad.
- Sci. USA 83:7363-7366.

Allo. Ngara, T., 1985. The application of a heat unit system in the choice of maize varieties in Zimbabwe. Zimbabwe Agric. J. 82:37-39.
 Allo. Nick, H., Bowen, B., Ferl, R. J., Gilbert, W., 1986. Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319:243-246.

- 421. Nonhebel, H. M., Kruse, L. I., Bandurski, R. S., 1985. Indole-3-acetic acid catabolism in <u>Zea mays</u> seedlings. J. Biol. Chem. 260:12685-12689.
 422. Nordquist, P. T., Compton, W. A., 1986. Chlorotic variation of experimental maize (<u>Zea mays</u>) hybrids grown on high pH soils. J. Plant Nutr. 9:435-442.
- 423. Nuberg, I. K., Allen, R. N., Colless, J. M., Darnell, R. E., 1986. Field reactions of maize (Zea mays) varieties commonly grown in Australia to boil smut caused by <u>Ustilago zeae</u>. Aust. J. Exp. Agric. 26:481-488.
 424. Nyamangombe, L., Lefebvre, C., 1985. Aluminum tolerance in <u>Zea mays</u> varieties from Central Africa and Europe. Cereal Res. Commun. 13:429-432.
 425. Nyamangombe, L., Lefebvre, C., 1986. Varietal differentiation in aluminium tolerance in <u>Zea mays</u> L. plantlets. Bull. Soc. Roy. Bot. Belg. 10:57-100. 119:97-100.
- 426. Odlemah, M., Manninger, I., 1984. Studies on the inheritance of resistance to head smut in maize. Proceedings of the International Conference on Integrated Plant Protection, Vol. 1, Integrated and Complex Protection of Field Crops, B. Darvas et al., eds., Hungarian Society of Agricultural Sciences, Budapest. 427. Odimeh, M., Manninger, I., 1984. Diallel analysis of resistance of maize to ear-rotting pathogens. Acta Agron. Acad. Sci. Hung. 33:441-444. 428. Ohta, Y., 1985. Transformation in maize by self-pollination with exogenous DNA (text in Japanese). Japan J. Breed. 35:30-31. 429. Ohta, Y., 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Nat. Acad. Sci. 83:715-719. 430. Olivetra, L. J., Cruz, I., 1986. Effect of different insecticides and dosages on the germination of corn seed. Pesq. Agrop. Brasil. 21:579-586.

- 429. Ohta, Y., 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Nat. Acad. Sci. 83:715-719.
 430. Oliveira, L. J., Cruz, I., 1986. Effect of different insecticides and dosages on the germination of corn seed. Pesq. Agrop. Brasil. 21:579-586.
 431. Omolo, E. O., Reddy, K. V. S., 1985. Screening maize genotypes for multiple resistance to stem-borers. Insect Sci. Appl. 6:405-408.
 432. Oplachko, L. T., Kostyshin, S. S., Yakovleva, L. A., Marchenko, M. M., 1985. Activity of ribosomes from seedlings of hybrid and inbred forms of corn in a cell-free system of protein synthesis. Sov. Plant Physiol. 32:543-547 (Fiziol. Rast. 32:710-714).
 433. Ortoga, E. I., Villegas, E., Vasal, S. K., 1986. A comparative study of protein changes in normal and quality protein maize during tortilla making. Cereal Chem. 63:446-450.
 434. Ortiz-G, J., Mendoza-O, L. E., Gonzalez-H, V. A., 1984. Effect of in situ selection and rotation based on seed yield on changes in morphological, physiological and economic characteristics of maize. within population variability and response to selection. Pp. 258-264 in Biometrics in Plant Breeding, Proce. 1986. Gene expression in maize pollen. Pp. 61-68 in Biology of Reproduction and Cell Motility in Maize.

- 436. Ottaviano, E., Sari Goria, M., Frova, C., 1986. Gene expression in maize pollen. Pp. 61-68 in Biology of Reproduction and Cell Motility in Plants and Animals, M. Cresti and R. Dallai, eds., Siena.
 437. Ottaviano, E., Sidoti, F., Villa, M., 1985. Pollen competitive ability in maize selection and single gene analysis. Pp. 21-26 in Biotechnology and Ecology of Pollen, D. L. Muicaby et al., eds., Springer-Verlag, New York.
 438. Overman, J. L., 1986. Resistance in corn (Zea mays) to the fall armyworm (Spodoptera frugiperda): The impact of public research on commercial seed companies. Fla. Entomol. 69:537-541.

- Overvides-Garcia, M., Hallauer, A. R., 1986. Selection-induced differences among strains of lowa Stiff Stalk Synthetic maize. Crop Sci. 26:506-439. 511.
- 440. Face, G. M., McClure, P. R., 1986. Comparison of nitrate uptake kinetic parameters across maize inbred lines. J. Plant Nutr. 9:1095-1112. 441. Pair, S. D., Wiseman, B. R., Sparks, A. N., 1986. Influence of four corn cultivars on fall armyworm (Lepidoptera: Noctuidae) establishment and parasitization. Fla. Entomol. 69:566-570.
- 442. Pakudin, V. Z., Lopatina S.-Kh. Biol. (4):60-63. Lopatina, L. M., Toderkan, V. G., 1986. Linear reaction of simple three-lines and double corn hybrids to environmental effects.
- 443. Fal, S. S., Khehra, A. S., Dhillon, B. S., 1986. Genetic analysis of and selection advance in a maize population. Maydica 31:153-162, 444. Palfi, G., Gulyas, S., 1986. Contributions to the specification of drought-resistance in certain varieties of wheat and maize. Novenytermeles 35:195-204.
- 445. Palmer, J. D., Stein, D. B., 1986. Conservation of chloroplast genome structure among vascular plants. Curr. Genetics 10:823-833. 446. Pamin, K., Compton, W. A., Walker, C. E., Alexander, D. E., 1986. Genetic variation and selection response for oil composition in corn. Crop Sci. 26:279-282.
- Sci. 2012/9-202.
 447. Pan, W. L., Camberato, J. J., Jackson, W. A., Moll, R. H., 1986. Utilizing of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize. Influence of prolificacy and nitrogen source. Plant Physiol. 82:247-253.
 448. Pandey, S., Diallo, A. O., Islam, T. M. T., Deutsch, J., 1986. Progress from selection in 8 tropical maize populations using international testing. Crop Sci. 26:879-884.
- 449. Pani, F., Gentinetta, E., Verderio, A., Lorenzoni, C., Motto, M., 1985. Recurrent selection for seed quality traits in an opaque-2 maize population. Buphytica 34:857-864.
- 450. Pareddy, D. R., Greyson, R. I., 1985. In vitro culture of immature tassels of an inbred field variety of Zea mays, cv Oh43. Plant Cell Tissue
- Organ Cult. 5:119-128. 451. Park, K. Y., Park, S. U., Moon, H. G., Kang, Y. K., Min, H. K., Hong, J. K., Han, S. K., Jong, S. K., 1985. Modified single cross maize hybrid Yangjuok. Res. Rep. Rural Dev. Adm. (Suweon) 27:161-165.
- 452. Parks, B. M., Poff, K. L., 1986. Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L. Plant Physiol. 81:75-80.
- 453. Pascholati, S. F., Heim, D., Nicholson, R. L., 1985. Phenylalanine ammonia-lyase and susceptibility of the maize mesocotyl to <u>Helminthosporium</u> maydis. Physiol. Plant Pathol. 27:345-356.
- 454. Pascholati, S. F., Nicholson, R. L., Butler, L. G., 1986. Phenylalanine ammonia-lyase activity and anthocyanin accumulation in wounded maize mesocotyls. J. Phytopathol. 115:165-172.
- mesocotyls. J. rhytopathol. 115:105-1/2.
 455. Pasztor, K., Kovacs, A., 1985. Changes in the traits of maize hybrids developed from mutants. Acta Agron. Acad. Sci. Hung. 34:380-386.
 456. Pasztor, K., Pepo, P., Kovacs, A., 1985. A study of the agronomic and chemical characteristics of maize hybrids SC-2390 and SC-2584 produced from mutant lines. Acta Agron. Acad. Sci. Hung. 34:380-392.
 457. Pataky, J. K., 1985. Partial rust resistance in sweet corn hybrid seedlings. Phytopathology 76:702-707.
 458. Paterniani, E., 1985. State of maize breeding in tropical areas of South America. Pp. 329-339 in A. Brandolini and F. Salamini, eds. (which
- see)
- 459. Patil, S. J., Panchal, Y. C., Janardhan, K. V., 1985. Effect of short-term moisture stress on free proline and relative water content in
- different plant parts of maize genotypes. Indian J. Plant Physiol. 27:322-327. 460. Paul, N. K., Ghosh, P. D., 1984. Cytological behavior during callus culture of Zea mays. Chromosome Inf. Serv. 37:6-7. 461. Paulis, J. W., Bietz, J. A., 1986. Separation of alcohol-soluble maize proteins by reversed-phase high performance liquid chromatography. J. Cereal Sci. 4:205-216.
- 462. Paz-Ares, J., Wienand, U., Peterson, P. A., Saedler, H., 1986. Molecular cloning of the <u>c</u> locus of Zea <u>mays</u>: a locus regulating the anthocyanin pathway. EMBO J. 5:829-833. 463. Peacock, W. J., 1986. A perspective on genetic engineering. Pp. 51-56 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
- 464. Peacock, W. J., Dennis, E. S., 1986. Plant gene engineering and plant agriculture. Pp. 223-239 in Biotechnology: Potentials and Limitations, S. Silver, ed., Springer-Verlag, Berlin.

- Silver, ed., Springer-Verlag, Berlin.
 465. Pedersen, K., Argos, P., Naravana, S. V. L., Larkins, B. A., 1986. Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of M. 15,000. J. Biol. Chem. 261:6279-6284.
 466. Pedersen, W. L., Perkins, J. M., Radtke, J. A., Miller, R. J., 1986. Field evaluation of corn inbreds and selections for resistance to <u>Exserchilum turcicum</u> Race 2. Plant Dis. 70:376-377.
 467. Pena-L, A., Marquez-S, F., 1984. Evaluation of 10 maize (Zea mays) varieties of the Cacahuacintle race and the effect of 3 population densities on prolificacy. Rev. Chapingo 9:49-55.
 468. Pencic, M., Nikolic, N., Neskovic, M., 1985. Plant regeneration in tissue culture of maize immature embryos. Arhiv. Poljopr. Nauke 46:115-128.
 469. Pence P. Reverts K. 1985.
- 469. Pepo, P., Pa 34:441-448. Pasztor, K., 1985. The share of mutant lines in increasing protein content and yield in hybrid combinations of maize. Novenytermeles
- 470. Pereira, A., Cuypers, H., Gierl, A., Schwarz-Sommer, Z., Saedler, H., 1986. Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 5:835-841.
 471. Pereira, A., Peterson, P. A., 1985. Origin and diversity of mutants controlled by the Uq transposable element system in maize. Genet. Res.
- 46:219-236.
- 472. Perez-Grau, L., Cortadas, J., Puigdomenech, P., Palau, J., 1986. Accumulation and subcellular localization of glutelin-2 transcripts during maturation of maize endosperm. FEBS Lett. 202:145-148.
- 473. Peterson, P. A., 1985. Virus-induced mutations in maize: on the nature of stress-induction of unstable loci. Genet. Res. 46:207-217.
- 474. Peterson, P. A., 1986. Mobile elements in maize and effects on gene expression. Pp. 41-49 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
 475. Peterson, P. A., 1986. Mobile elements in maize. Plant Breeding Rev. 4:81-4122.
 476. Peterson, P. A., 1986. Mobile elements in maize: A force in evolutionary and plant breeding processes. Pp. 47-78 in Genetics, Development, and Evolution: 17th Stadler Genetics Symposium, J. P. Gustafson et al. eds., New York, Plenum Press.

- 477. Peterson, P. A., Salamini, F., 1986. A search for active mobile elements in the Iowa stiff-stalk synthetic maize population and some derivatives. Maydica 31:163-172.

- derivatives. Maydica 31:163-172.
 478. Petit, P., Cantrel, C., 1986. Mitochondria from Zea mays leaf tissues--Differentiation of carbon assimilation and photorespiratory activity between mesophyll and bundle sheath cells. Physiol. Plant. 67:442-446.
 479. Petolino, J. F., Jones, A. M., 1986. Anther culture of elite genotypes of maize. Crop Sci. 26:1072-1074.
 480. Pfahler, P. L., Mulcahy, D. L., Barnabas, B., 1986. The effect of forced shedding on pollen traits, seedsetting, and transmission at various maize (Zea mays L.) endosperm mutant loci. Acta Bot. Neer. 35:195-200.
 481. Pfahler, P. L., Mulcahy, D. L., Barnabas, B., 1986. The effect of pre-pollination stylar treatments on seedset and pollen transmission at various maize (Zea mays L.) endosperm mutant loci. Acta Bot. Neer. 35:201-207.
 482. Philipps, G., Chaubet, N., Chaboute, M.-E., Ehling, M., Gigot, C., 1986. Genomic organization and nucleotide sequences of two corn histone N4 genese. Gene 42:225-229.
- 482. Philipps, G., Chaubet, N. genes. Gene 42:225-229.
- 483. Finter, L., 1986. Ideotype of silo maize (Zea mays L.) hybrids. Novenytermeles 35:183-194.
 484. Finter, L., Hunter, R. B., Szabo, J., 1986. Near infrared technique as a tool for investigating corn silage (Zea mays L.) quality. Maydica 31:295-306.
- 485. Pinter, L., Schmidt, J., Sipocz, J., 1985. Complex evaluation of maize hybrids (Zea mays) of various genotypes. Acta Agron. Acad. Sci. Hung. 34:249-258.
- 54:249-236.
 54:249-236.
 54:249-236.
 686. Pinto, L. R. M., Silva, J. C., Silva, M. D. A. E., Sediyama, C. S., 1985. Estimates of genetic constants in grain yield by the analysis of means of a diallel cross among eight varieties of corn (Zea mays). Rev. Ceres 32:132-148.
 687. Platt-Aloia, K. A., Lord, E. M., DeMason, D. A., Thomson, W. W., 1986. Freeze-fracture observations on membranes of dry and hydrated pollen from Collomia, Phoenix and Zea. Planta 168:291-298.
 688. Poethig, R. S., Coe, E. H., Jr., Johri, M. M., 1986. Cell lineage patterns in maize embryogenesis: a clonal analysis. Develop. Biol. 117:392-400.
- 404.
- 489. Pokhmelnykh, G. A., Shumny, V. K., 1986. On the nature of heterochromatic knob regions in maize chromosomes. IV. The correlation of chromosome knob polymorphism and natural crossing systems. Genetika 22:660-667. 490. Polacco, M. L., 1986. Thylakoid assembly order in Zea mays. Curr. Topics Plant Biochem. Physiol. 5:205.
- 491. Pollak, L. M., Gardr Maydica 31:203-213. Gardner, C. O., 1986. Relationships between heterozygous enzyme loci and plant traits in 2 open-pollinated maize populations.
- Can. J. Bot. 63:2196-2199.

- Maydica 31:203-213.
 492. Polowick, P. L., Greyson, R. I., 1985. Microsporogenesis and gametophyte maturation in cultured tassels of Zea mays. Can. J. Bot. 63:2196-2199
 493. Pomeranz, Y., Czuchajowska, Z., 1986. Rapid and simple detection of a mixture of wet and dry corn. Cereal Chem. 63:283-284.
 494. Pomeranz, Y., Czuchajowska, Z., Lai, F. S., 1986. Comparison of methods for determination of hardness and breakage susceptibility of commercially dried corn. Cereal Chem. 63:39-42.
 495. Pomeranz, Y., Czuchajowska, Z., Lai, F. S., 1986. Gross composition of coarse and fine fractions of small corn samples ground on the Stenvert Hardness Tester. Cereal Chem. 63:22-26.
 496. Pomeranz, Y., Hall, G. E., Czuchajowska, Z., Lai, F. S., 1986. Test weight, hardness, and breakage susceptibility of yellow dent corn hybrids. Cereal Chem. 63:349-351.
 497. Pozzi, G. L., Gentineta, K., Salamini, F., Motto, M., 1986. Genotypic variation for cold tolerance among 12 maize (Zea mays L.) populations.
- 497. Pozzi, G. L., Gentinetta, E., Salamini, F., Motto, M., 1986. Genotypic variation for cold tolerance among 12 maize (Zea mays L.) populations.
- Z. Pflanzenzucht. 97:2-12.
- 498. Price, S. C., Kahler, A. L., Hallauer, A. R., Charmley, P., Giegel, D. A., 1986. Relationships between performance and multilocus heterozygosity at enzyme loci in single-cross hybrids of maize. J. Hered. 77:341-344.
- at enzyme fool in single-close dybrids of marze. 5. hered. 7.341-344.
 Ashnan, N. A. E., Bourda, R., 1986. The effect of seed size and shape on early development in maize (Zea mays). Agronomic 6:181-186.
 Son. Ram, P. C., Srivastava, K. N., Lodha, M. L., Mehta, S. L., 1986. Purification and characterization of proteolytic enzymes from normal and opaque-2 Zea mays developing endospermes. J. Biosci. (Bangalore) 10:257-266.
 Son. Ramani, S., Kannan, S., 1985. An examination of zinc uptake patterns by cultivars of sorghum and maize: Differences amongst hybrids and their parents. J. Plant Nutr. 8:1199-1210.
 Parent S. France S. Statics on Zeymetric and following of Zeymetric for some pairs of the parents. J. Plant Nutr. 8:1199-1210.
- parents. J. Plant Nutr. 8:1199-1210. 502. Ramani, S., Kannan, S., 1985. Studies on Zn uptake and influence of Zn and Fe on chlorophyll development in young maize cultivars. J. Plant
- 503. Randle, W. M., Davis, D. W., Groth, J. V., 1986. Interplot interference in field plots with leaf rust of maize (Zea mays). J. Am. Soc. Hortic. Sci. 111:297-300.
- Sol, Rao, K. V., Suprasanna, P., Reddy, G. M., 1986. Callus induction, plantlet regeneration and gene action studies in anthocyanin synthesis in maize. Pp. 283-292 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
 Sascio, N., Mariani, P., Chitano, P., Dalla Vecchia, F., 1986. An ultrastructural study of maize leaf etioplasts throughout their entire life cycle. Protoplasma 130:98-107.
- cycle. Protoplasma 130:98-107.
 Sole. Reddy, G. M., Coe, E. H., Jr., 1986. Anthocyanin biosynthesis in maize--A model system in the study of gene action and gene regulation. Pp. 81-89 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
 Sole. Reddy, G. M., Coe, E. H., Jr., 1986. Gene Structure and Function in Higher Plants: Proceedings of the International Symposium held at Hyderabad, India, December 7-9, 1983, New Delhi, Oxford & IBH Publishing Co.
 Redn, P. N., Russell, W. A., 1986. Indirect response in yield and harvest index to recurrent selection for stalk quality and corn borer (Ostrinia nubilalis) resistance in maize (Zea mays). Rev. Bras. Genet. 9:41-53.
 Renfro, B. L., 1985. Breeding for disease resistance in tropical maize and its genetic control. Pp. 341-365 in A. Brandolini and F. Salamini, other of the topol

- eds. (which see).
- eds. (which see). 510. Rhoades, M. M., 1986. McClintock, Barbara-An appreciation. Maydica 31:1-4. 511. Rhodes, C. A., Phillips, R. L., Green, C. E., 1986. Cytogenetic stability of aneuploid maize tissue cultures. Can. J. Genet. Cytol. 28:374-384. 512. Rivin, C. J., Cullis, C. A., Walbot, V., 1986. Evaluating quantitative variation in the genome of Zea mays. Genetics 113:1009-1019. 513. Rivin, C. L., 1986. Analyzing genome variation in plants. Meth. Enzymol. 118:75-86. 514. Robertson, D. S., 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117:1-10. 515. Robertson, D. S., 1986. Genetic studies on the loss of Mu mutator activity in maize. Genetics 113:765-773.

- 516. Rochester, D. E., Winter, J. A., Shah, D. M., 1986. The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 5:451-458.

- EMBU J. 5:491-458.
 S17. Rood, S. B., 1985. Application of gibberellic acid to control tillering in early-maturing maize. Can. J. Plant Sci. 65:901-912.
 S18. Rood, S. B., 1986. Heterosis and the metabolism of [⁻H]gibberellin A, in maize. Can. J. Bot. 64:2160-2164.
 S19. Rood, S. B., Beall, F. D., Pharts, R. P., 1986. Photocontrol of gibberellin metabolism in situ in maize. Plant Physiol. 80:448-453.
 S20. Rosales, T. P., Molina, M. del C., 1984. Gytogenetic study of the hybrid Zea mays x Zea diploperentis. Nucleus 27:242-245.
 S21. Rowland, L. J., Strommer, J. N., 1986. Anaerobic treatment of maize roots affects transcription of <u>Adhl</u> and transcript stability. Mol. Cell. proc. 2027.
- Biol. 6:3368-3372. 5101. 0.0500-0572.
 522. Russell, W. A., 1985. Comparison of the hybrid performance of maize inbred lines developed from the original and improved cycles of BSSS. Maydica 30:407-419.
- 523. Russell, W. A., 1986. Contribution of breeding to maize improvement in the United States, 1920s-1980s. Iowa State J. Res. 61:5-34. 524. Russell, W. A., Johnson, D. Q., LeFord, D. R., 1985. Plant breeding studies with grain quality traits in corn. Proc. Annu. Corn & Sorghum Res. Conf. 40:125-141.
- Solar Voillouria, Solarosek, E., 1986. An increase of 1000-grain weight in maize as a result of genotype influence (Czech). Rostl. Vyroba 32:97-104.
 Sachs, M. M., Dennis, E. S., Gerlach, W. L., Peacock, W. J., 1986. Two alleles of maize alcohol dehydrogenase 1 have 3' structural and poly(A) addition polymorphiams. Genetics 113:449-467.
 Szł. Sachs, M. M., Ho, T-H. D., 1986. Alteration of gene expression during environmental stress in plants. Ann. Rev. Plant Physiol. 37:363-376.
 Sack, F. D., Suyemoto, M. M., Leopold, A. C., 1986. Amyloplast sedimentation and organelle saltation in living corn columella cells. Am. J.
- Bot. 73:1692-1698.
- Bot. 73:1692-1698.
 529. Saini, J. P., Dube, S. D., 1986. In vitro studies on genetic effects and viability of maize pollen. Maydica 31:227-232.
 530. Salamini, F., 1984. The concept of DNA transposition and its relevance in plant genetics and breeding. Monogr. Genet. Agrar. (4):31-48.
 531. Salamini, F., 1985. Photosensitivity in maize: evaluation, genetics, and breeding for insensitivity. Pp. 143-157 in A. Brandolini and F. Salamini, eds. (which see).
 532. Salanoubat, M., Pernes, J., 1986. Enzyme polymorphisms within and between European maize populations. Maydica 31:269-278.
 533. Salazar, A. M., Hallauer, A. R., 1986. Divergent mass selection for ear length in maize. Rev. Brasil. Genetica 9:281-294.
 534. Salerno, G. L., 1986. Relationship between sucrose and starch in developing maize endosperm: UDP-glucose phosphorylase activity. Plant Sci. 44:11-117.

- 534. Salerno, G. 44:111-117.
- Sanchez-Martinez, D., Puigdomenech, P., Pages, M., 1986. Regulation of gene expression in developing Zea mays embryos. Protein synthesis during embryogenesis and early germination of maize. Plant Physiol. 82:543-549.
 Sanford, J. C., Skubik, K. A., Reisch, B. I., 1985. Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor. Appl. Genet. 69:571-574.
- Genet. 09:571-574.
 Sanzesha, H. G., Ramesh, S. V., Jayaram, Ch., Reddy, A. R., 1986. Studies on chlorophyll and protein accumulation in thylakoids and chloroplast development in virescent seedlings of a maize mutant. Biochem. Int. 12:181-188.
 Santos, M. A., Torne, J. M., 1986. A comparative analysis between totipotency and growth environment conditions of the donor plants in tissue culture of Zea mays L. J. Plant Physical. 123:299-306.
 Santos, M. X. dos., Naspolini-Filho, V., 1986. Estimate of genetic parameters in three selection cycles among and within half-sib families in the Dentado Composto Nordeste maize (Zea mays L.) population. Rev. Brasil. Genetica 9:307-320.

- 540. Sari Gorla, M., Frova, C., Binelli, G., Ottaviano, E., 1986. The extent of gametophytic-sporophytic gene expression in maize. Theor. Appl. Genet. 72:42-47.
- 541. Sari Gorla, M., Frova, C., Redaelli, R., 1986. Extent of gene expression at the gametophytic phase in maize. Pp. 27-32 in Biotechnology and
- Ecology of Pollen, D. L. Mulcahy et al., eds., Springer-Verlag, New York. 542. Sarma, J. S. P., 1985. Desynapsis in a cultivar of Zea mays. Cell Chromosome Res. 8:50-52. 543. Sato, M., Bockholt A. J., Kokubu, T., 1985. Evaluation of the efficiencies of selection indices with erroneous parameters. Mem. Fac. Agric. Kagoshima Univ. 21:67-76.
- 544. Savchenko, E. K., Badaeva, E. D., Boyko, E. V., Badaev, N. S., Kunakh, V. A., Morgun, V. V., Zelenin, A. V., 1986. Karyotype analysis of various genotypes of maize. Genetika 22:95-101.
- 545. Savic, N., Ivanovic, M., 1985. Parameters of stability for grain yield in maize (Zea mays L.) hybrids of different FAO maturity groups. Arhiv Poljopr. Nauke 46:3-12.
- 546. Savidan, Y. H., 1986. Apomixis as a new tool to increase grain crop productions in semi-arid tropics--a research project. Agr. Ecosyst. Environ, 16:285-290.
- Schel, J. H. N., Kieft, H., 1986. An ultrastructural study of embryo and endosperm development during in vitro culture of maize ovaries (Zea mays). Can J. Bot. 64:2227-2238.
 Schnable, P. S., Peterson, P. A., 1986. Distribution of genetically active Cy transposable elements among diverse maize lines. Maydica 31:59-
- 82
- Schneegurt, M. A., Beale, S. I., 1986. Biosynthesis of protoheme and heme-A from glutamate in maize. Plant Physiol. 81:965-971.
 Schneil, F. W., Becker, H. C., 1985. Einflusse von heterozygotie und heterogenitat auf ertrag und ertragstabilitat bei hybridmais. Ber. Arbeitstag. Gumpenstein 1985:165-172.
 Schnell, F. W., Becker, H. C., 1986. Yield and yield stability in a balanced system of widely differing population structures in Zea mays L. Z.
- Pflanzenzucht. 97:30-38.
 552. Schonwitz, R., Ziegler, H., 1986. Influence of rhizosphere bacteria on morphological characteristics of maize seedlings (Zea mays L.). Z. Pflanz. Bodenk. 149:614-622.
- 553. Schonwitz, R., Ziegler, H., 1986.
- Schonw... seedlings. 2. Quantitative and qualitative aspects of a developing rhizosphere microflora of hydroponically grown maize Z. Ptlanz. Bodenk. 149:623-634.
- 554. Schoper, Lambert, R. J., Vasilas, B. L., 1986. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Sci. 26:1029-1033.
- 555. Schuster, A. M., Sisco, P. H., 1986. Isolation and characterization of single-stranded and double-stranded RNAs in mitochondria. Meth. Enzymol. 118: 497-507.
- Schuster, G., Pecker, I., Hirschberg, J., Kloppstech, K., Ohad, I., 1986. Transcription control of the 32 kDa-Q_B protein of photosystem II in differentiated bundle sheath and mesophyll chloroplasts of maize. FEBS Lett. 198:56-60.
 Schuster, M. L., Smith, C. C., Ziegelbein, M., 1985. Inheritance of expression of specific symptoms associated with leaf freckles of maize 535. Schwartz, D., 1986. Analysis of the autonomous wwmm² transposable element mutant of maize. Naydica 31:123-130.
 558. Schwartz, D., 1986. Analysis of the autonomous wwm² transposable element mutant of maize. Naydica 31:123-130.
 559. Sears, E. R., Laughnan, J. R., Coe, E. H., Jr., Bianchi, A., Schaeffer, G. W., Peacock, W. J., deGroot, B., Bhatia, C. R., 1986. Panel discussions: The role of plant genetics in the 21st century. Pp. 294-303 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).

- alscussions: The role of plant generics in the first century. Fp. 234-303 in G. H. Keddy and E. H. Goe, Jr., eds. (Which see).
 560. Sederoff, R. R., Ronald, F., Bedinger, F., Rivin, C. L., Walbot, V., Bland, M. M., Levings, C. S. III., 1986. Maize mitochondrial plasmid S-1 sequences share homology with chloroplast gene pable. Genetics 113:469-482.
 561. Segarra, T. I. M., 1985. Evaluation of the combining ability of maize lines in a diallele cross. Dokl. Vses. Ordena Lenina Ordena Trud. Krasnogo Znameni Akad. S.-Kh. Nauk Im. V. I. Lenina 11:14-16.
- 562. Sentz, J. C., Cantrell, R. P., 1984. Proceedings U.S. Universities CIMMYT Maize Conference, University of Minnesota International Agricultural Programs, St. Paul.
- 563. Setter, T. L., Flannigan, B. A., 1986. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop Sci. 26:575-579.
- 564. Shadley, J., Weber, D. F., 1986. Location of chromosomal regions controlling fatty acid composition of embryo oil in Zea mays L. Can J. Genet. Cvtol. 28:260-265.
- 565. Shah, D. M., Hironaka, C. M., Wiegand, R. C., Harding, E. I., Krivi, G. G., Tiemeler, D. C., 1986. Structural analysis of a maize gene coding for glutathione-S-transferase involved in herbicide detoxification. Plant Mol. Biol. 6:203-212. 566. Shahi, J. P., Singh, I. S., 1985. Estimation of genetic variability for grain yield and its components in a random mating population of maize

- (Zea mays). Crop Improv. 12:126-129.
 567. Shahi, J. P., Singh, I. S., Agrawal, K. N., 1986. Genetic variability for grain yield and its component characters at 2 plant densities in maize (Zea mays L.). Z. Pflanzenzucht.-J. Plant Breed. 96:122-129.
 568. Shamer, D. L., 1985. Mechanism of action of the imidazolinones and cell culture selection of tolerant maize. Pp. 287-299 in Biotechnology in Distribution of Academic Press. Orlando. Plant Science, M. Zaitlin et al., eds., Academic Press, Orlando.
 569. Sheen, J.-Y., Bogorad, L., 1985. Differential expression of the ribulose biphosphate carboxylase large subunit gene in bundle sheath and mesophyll cells of developing maize leaves is influenced by light. Plant Physiol. 79:1072-1076.
- 570. Sheen, Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types.
- Sheen, J.-Y., Bogorad, L., 1986. Differ Proc. Nat. Acad. Sci. USA 83:7811-7815. 571. Sherchand, K., Whitney, D., 1985. Response to lime and phosphorus by several genetic sources of corn (Zea mays) on a low pH and phosphorus soil in the greenhouse. J. Plant Nutr. 8:1075-1088.
- 572. Sheridan, W. F., Neuffer, M. G., 1986. Genetic control of embryo and endosperm development in maize. Pp. 105-122 in G. M. Reddy and E. H. Coe,
- Jr., eds. (which see).
- Jr., eds. (which see).
 573. Sheridan, W. F., Thorstenson, Y. R., 1986. Development profiles of three embryo-lethal maize mutants lacking leaf primordia: ptd*-1130, cp*-1418, and bno*-7478. Develop. Genetics 7:35-49.
 574. Silva, H. P., Pereira, O. A. P., Miranda-Filho, J. B. D., Balmer, E., 1986. Genetic analysis of resistance of corn leaf central veins to Collectrichum graminicola. Summa Phytopathol. 12:80-91.
 575. Simeonov, N., 1985. Inheritance of certain quantitative characters in hybridization between lines from Zea mays indentata and Zea mays everta unbroader Corner Sci. 12:365-373.
- Genet. Sel. 18:365-373. ubspecies. 576. Singh, J., 1985. Current status of maize improvement in subtropical areas of Indian subcontinent. Pp. 311-328 in A. Brandolini and F. Salamini, eds. (which see).
- 577. Singh, M., Khehra, A. S., Dhillon, B. S., 1986. Direct and correlated response to recurrent full-sib selection for prolificacy in maize. Grop 26:275-278. Sc1.
- Sitz Linds L. M., Turpen, T., 1985. A heat shock protein is encoded within mitochondria of higher plants. J. Biol. Chem. 260:15382-15385.
 Sitz Linds Linds, R. W., Scandalios, J. G., 1986. Evidence for processing of maize catalase 2 and purification of its messenger RNA aided by translation of antibody-bound polysomes. Biochemistry-USA 25:2027-2032.
 Sitz Linds Linds, Sitz L
- Vidaver, A. K., 1986. Population dynamics of <u>Clavibacter michiganense</u> subsp. nebraskense in field-grown dent corn and popcorn. Plant 580. Smidt, M.,
- Dis. 70:1031-1035. 581. Smith, J. S. C., Smith, O. S., 1986. Environmental effects on zein chromatograms of maize inbred lines revealed by reversed-phase high-
- performance liquid chromatography. Theor. Appl. Genet. 71:607-612. 582. Smith, J. S. C., Wych, R. D., 1986. The identification of female selfs in hybrid maize: A comparison using electrophoresis and morphology. Seed Sci. Technol. 14:1-8.
- 583. Smith, O. S., 1986. Covariance between line per se and testcross performance. Crop Sci. 26:540-543. 584. Sobrado, M. A., 1986. Tissue water relations and leaf growth of tropical corn cultivars under water deficits. Plant Cell Environ. 9:451-458. Somerville, C. R., 1986. Analysis of photosynthesis with mutants of higher plants and algae. Ann. Rev. Plant Physiol. 37:467-507. 586. Sorger, G., Gooden, D. O., Earle, E. D., McKinnon, J., 1986. NADH nitrate reductase and NAD(P)H nitrate reductase in genetic variants and Plant Cell Environ. 9:451-459.
- regenerating callus of maize. Plant Physiol. 82:473-478.
- 587. Sparchez, C., Puia, I., Soran, V., 1985. Stud. Stud. Cercet. Biol. Ser Biol. Veg. 37:53-58. Studies on the quantity of nuclear DNA in maize roots (Zea mays) under the action of some herbicides.
- 588. Sprague, G. F., 1986. Citation Classic, Sprague, G. F., Tatum, L. A., 1942. General vs. specific combining ability in single crosses of corn. J. Amer. Soc. Agron. 34:923-932. Current Contents Agr. Biol. Env. Sci. 17:39.
- or name: Soc. Agron. 34:723-732. Current Contents Agr. Stol. Env. Sci. 1/:39.
 589. Sprague, G. F., 1986. Mutability in the <u>a-ruq. Uq</u> system in maize. Maydica 31:17-30.
 590. Stamp, P., Thiraporn, R., Geisler, G., 1986. Relationship between biomass yield of field grown maize genotypes and seedling traits under controlled conditions. J. Agron. Crop Sci. 157:86-91.
 591. Stamp, P., Thiraporn, R., Geisler, G., 1986. Relationship between early field growth of maize genotypes and seedling traits under conditions. J. Agron. Crop Sci. 156:188-192.
 592. Steinmetz A. Gastroylato M. Saver, B. T. Boograd J. 1996. Between PCL. 2. Latitutional conditions. J. Agron. Crop Sci. 156:188-192.
- conditions. J. Agron. Crop Sci. 156:188-192.
 592. Steinmetz, A. A., Castroviejo, M., Sayre, R. T., Bogorad, L., 1986. Protein PSII-G. An additional component of photosystem II identified throu its plastid gene in maize. J. Biol. Chem. 261:2485-2488.
 593. Steinmetz, A. A., Weil, J.-H., 1986. Isolation and characterization of chloroplast and cytoplasmic transfer RNAs. Meth. Enzymol. 118:212-231
 594. Stern, D. B., Newton, K. J., 1985. Mitochondrial gene expression in Cucurbitaceae-conserved and variable features. Curr. Genet. 9:395-404.
 595. Stern, D. B., Newton, K. J., 1986. Isolation of plant mitochondrial RNA. Meth. Enzymol. 118:488-496.
 596. Stern, D. B., Palmer, J. D., 1984. Recombination sequences in plant mitochondrial genomes: Diversity and homologies to known mitochondrial genes. Nucleic Acids Res. 12:6141-6157. Bogorad, L., 1986. Protein PSII-G. An additional component of photosystem II identified through
- Isolation and characterization of chloroplast and cytoplasmic transfer RNAs. Meth. Enzymol. 118:212-231.

- Stevens, E. J., Eskridge, K. M., Stevens, S. J., Flowerday, A. D., Gardner, C. O., 1986. Phenology of dent corn and popcorn. I. Analysis of repeated measurements from phenology experiments. Agron. J. 78:1081-1088.
 Stevens, E. J., Stevens, S. J., Flowerday, A. D., Gardner, C. O., Eskridge, K. M., 1986. Developmental morphology of dent corn and popcorn with respect to growth staging and crop growth models. Agron. J. 78:867-874.
 Stevens, E. J., Stevens, S. J., Flowerday, A. D., Gardner, C. O., Eskridge, K. M., 1986. Phenology of dent corn and popcorn. II. Influence of planting date on crop emergence and early growth stages. Agron. J. 78:880-884.
 Stevens, E. J., Stevens, S. J., Flowerday, A. D., Gardner, C. O., Eskridge, K. M., 1986. Phenology of dent corn and popcorn. III. Influence of planting date on crop emergence and early growth stages. Agron. J. 78:880-884.
 Stevens, E. J., Stevens, S. J., Flowerday, A. D., Gardner, C. O., Eskridge, K. M., 1986. Phenology of dent corn and popcorn. III. Improved crop development models. Agron J. 78:885-891.
 Stevens, S. J., Stevens, F. J., Lee, K. W., Flowerday, A. D., Gardner, C. O., 1986. Organogeneous of the statistic and detaillate information of the statistic of
- 601. Stevens, S. J., Stevens, E. J., Lee, K. W., Flowerday, A. D., Gardner, C. O., 1986. Organogenesis of the staminate and pistillate inflorescences of pop and dent corns-relationship to leaf stages. Crop Sci. 26:712-718.
 602. Stewart, D. W., Dayer, L. M., 1986. Development of a growth model for maize. Can. J. Plant Sci. 66:267-280.
- 603. Stiborova, M., Leblova, S., Zbrozek, J., 1986. The subunit structure and the smino acid composition of maize (Zea mays L.) phosphoenolpyruvate carboxylase. Photosynthetica 20:173-180. carboxylase. Photosynthetica 20:173-180.
 604. Stoddart, J. L., Lloyd, E. J., 1986. Modification by gibberellin of the growth and temperature relationship in mutant and normal genotypes of several cereals. Planta 167:364-368.
- 605.
- Stroshine, R. L., Kirleis, A. W., Tuite, J. F., Bauman, L. F., Emam, A., 1986. Differences in grain quality among selected corn hybrids. Cereal Food World 31:311-316.

- bod world 3:1:11-316.
 606. Styles, R. D., 1986. Relating genotypes to phenotypes for genes controlling flavonoid pigments in maize. Pp. 135-145 in G. M. Reddy and E. H. Coe, Jr., eds. (which see).
 607. Styles, E. D., Coe, E. H., Jr., 1986. Unstable expression of an R allele with a3 in maize. J. Hered. 77:389-393.
 608. Suhayda, C. G., Haug, A., 1986. Organic acids reduce aluminum toxicity in maize root membranes. Physiol. Plant. 68:189-195.
 609. Sukalovic, V. H. T., 1986. Activity and distribution of nitrogen-metabolism enzymes in the developing maize kernel. Physiol. Plant. 67:247-252. 610. Sundberg, M. 1 73:1699-1712. M. D., Orr, A. R., 1986. Early inflorescence and floral development in Zea diploperennia, diploperennial teosinte. Am. J. Bot.
- 611. Suprasanna, P., Rao, K. V., Reddy, G. M., 1986. Plantlet regeneration from glume calli of maize (Zea mays L.). Theor. Appl. Genet. 72:120-122. 612. Szel, S., 1984. Study of resistance to <u>Fusarium graminearum</u> in opaque maize lines and in hybrids produced from them by diallel crossing. Acta Agron. Acad. Sci. Hung. 33:444-448.
- 613. Tacke, E., Schwarz-Sommer, Z., Peterson, P. A., Saedler, H., 1986. Molecular analysis of states of the <u>Al</u> locus of <u>Zea mays</u>. Maydica 31:83-92. 614. Taylor, L. P., Chandler, V. L., Walbot, V., 1986. Insertion of 1.4 kb and 1.7 kb Mu elements into the Bronzel gene of <u>Zea mays</u> L. Maydica 31:31-46.
- 51:31-90.
 615. Taylor, W. C., Burgess, D. G., Mayfield, S. P., 1986. The use of carotenoid deficiencies to study nuclear-chloroplast regulatory interactions. Curt. Topics Plant Blochem. Physiol. 5:117-127.
 616. Taylor, W. C., Mayfield, S. P., 1985. Ontogenetically regulated photosynthetic genes. Pp. 413-416 in Molecular Biology of the Photosynthetic Apparatus, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
 617. Thomas, S. H., Norton, D. C., 1986. Influence of selected maize hybrids on nematode populations under differing edaphic conditions. Plant Dis. 70:934-937.
- 70:234-237. 618. Timmons, D. R.,
- 101239-237.
 618. Timmons, D. R., Crosbie, T. M., Cruse, R. M., Erbach, D. C., Potter, K. N., 1986. Effect of tillage and corn hybrids on N-uptake, P-uptake, and K-uptake at different growth stages. Maydica 31:279-294.
 619. Tipping, P. W., Mikolajczak, K. L., Rodriguez, J. G., Zilkowski, B. W., Legg, D. E., 1986. Attraction of <u>Sitophilus oryzae</u> (L.) and <u>S. zeamais</u> Motach. (Coleoptera: Curculionidae) to extracts from two corn genotypes. J. Kans. Entomol. Soc. 59:190-194.
 620. Tipping, P. W., Rodriguez, J. G., Poneleit, C. G., Legg, D. E., 1986. Feeding activity of <u>Sitophilus zeamais</u> (Coleoptera: Curculionidae) on resistant and susceptible corn genotypes. Environ. Entomol. 15:654-658.
 621. Toledo, J. F. F. D., Miranda-Filho, J. B. D., 1985. Predicting the potential of open-pollinating populations for the production of superior Fl hybrids. Theor. Appl. Genet. 71:563-569.

- 622. Toloczyki, C., Feix, G., 1986. Occurrence of 9 homologous repeat units in the external spacer region of a nuclear maize rRNA gene unit. Nucl. Acid Res. 14:4969-4986. 623. Tomes, D. T., 1985. Opportunities and limitations of the genotypic influences on establishment and plant regeneration from callus and cell

- cultures of cop species. Pp. 3-14 in Biotechnology in Plant Science, N. Zaitlin, et al., eds., Academic Press, Orlando.
 624. Tomov, N., Oui, C. H., 1986. Effect of ecological conditions on maize development, yield and heterosis effect. Genet. Sel. 19:279-287.
 625. Torrent, M., Poca, E., Campos, N., Ludevid, M. D., Palau, J., 1986. In maize, glutelin-2 and low molecular weight zeins are synthesized by membrane-bound polyribosomes and translocated into microsomal membranes. Plant Mol. Biol. 7:393-403.
 626. Torti, G., Manzocchi, L., Salamini, F., 1986. Free and bound indole-acetic acid is low in the endosperm of the maize mutant defective endosperm-B18. Theor. Appl. Genet. 72:602-605.

- B16. Incor. Appl. Genet. 721002-003.
 627. Totawat, K. L., Mehta, A. K., 1985. Salt tolerance of maize and sorghum genotypes. Ann. Arid Zone 24:229-236.
 628. Traynor, P. L., Levings, C. S. III., 1986. Transcription of the S-2 maize mitochondrial plasmid. Plant Mol. Biol. 7:255-264.
 629. Tret'Yakov, N. N., Koshkin, E. I., Motorina, M. V., Bizyaev, E. F., 1985. Features of the adaptation of two genotypes of corn to various levels of illumination. Izv. Timiryazev S.-Kh. Akad. (3):109-119.
 620. The transcription of the standard stand

- of illumination. Izv. Timiryazev S.-Kh. Akad. (3):109-119.
 630. Troyer, A. F., 1986. Hybrid corn plants with improved standability--U.S. Patent-4607453. Off. Gaz. U.S. Pat. Trademark Off., Pat. 1069:1438.
 631. Troyer, A. F., 1986. Inbred corn line U.S. Patent 4594810. June 17, 1986. Off. Gaz. U.S. Pat. Trademark Off., Pat. 1067:964.
 632. Troyer, A. F., 1986. Selection for early flowering in corn--18 adapted F-2 populations. Crop Sci. 26:283-285.
 633. Tsaftaris, A. S., Scandallos, J. G., 1986. Spatial pattern of catalase (Cat2) gene activation in scutella during postgerminative development in maize. Proc. Nat. Acad. Sci. 83:5549-5553.
 634. Tsao, S. H., Wang, C. S., Liu, D. J., 1986. Studies on the characteristics of kernel-filling in maize. J. Agric. Res. China 35:23-36.
 635. Taay, H.-S., 1986. Improvement of cereal crops through anther culture. J. Agric. Assoc. China New Ser. (134):1-23.
 636. Tuberosa, R., Phillips, R. L., 1986. Isolation of methotrexate-tolerant cell lines of corn. Maydica 215-225.
 637. Tucker, D. H., Jr., Trevathan, L. E., King, S. B., Scott, G. E., 1986. Effect of four inoculation techniques on infection and aflatoxin concentration of resistant and susceptible corn hybrids inoculated with <u>Aspergillus flavus</u>. Phytopathology 76:290-293.
 638. Tute, J. F., Koh-Knox, C., Stroshine, R. R., Cantone, F. A., Bauman, L. F., 1985. Effect of physical damage to corn kernels on the development of <u>Penicillium spp. and Aspergillus glaucus</u> in storage. Phytopathology 75:1137-1140.
 639. Turbin, N. V., Palilova, A. N., Fomchenko, N. S., 1983. On the action mechanisms of genes of the fertility Rf-restorers in maize T-cytoplasm. Dokl. Akad. Nauk SSSR 272:122-725.
- boni, had, and had, had, bon Frither 1991.
 boni, had, bon Frither 1991.
 bon Frithe
- 642. Vallejo-D, H. L., Marquez-S, F., 1984. Comparison of two improvement schemes for adaptability under mass selection in the corn (Zea mays) cultivar, ZAC-58. Agrociencia (58):29-44.

- Cultivar, ANU-30. Agrociencia (30):22-44.
 Calibrar, A. M. M., 1986. Developmental morphology and cytology of the young maize embryo (Zea mays L.). Acta Bot. Neer. 35:169-188.
 Calibrar, N. E., Seif, R. D., 1985. Effect of defoliation on the timing of anthesis and silking of maize inbred lines. Maydica 30:427-435.
 Vayda, M. E., Freeling, M., 1986. Insertion of the Mul transposable element into the first intron of maize Adhl interferes with transcript elongation but does not disrupt chromatin structure. Plant Mol. Biol. 9:441-454.
- 646. Vedeneev, G. I., Pankova, N. A., 1986. Genetic control of quantitative characters in maize. I. Corn ear dry matter content. Genetika 22:642-650.
- 647. Vedeneev, G. I., Zhuzhuckin, V. I., 1986. Genetic control of quantitative characters in maize. II. Kernel weight. Genetika SSSR 22:801-808. 648. Venturelli, B., Gentinetta, E., Verderio, A., Motto, M., 1986. Genetic variation of traits related to grain size in maize varieties. Riv. 648. Venturelli, B., Agron. 20:26-31.
- 649. Vierling, E., Mishkind, M. L., Schmidt, G. W., Key, J. L., 1986. Specific heat shock proteins are transported into chloroplasts. Proc. Natl. Acad. Sci. USA 83:361-365.
- 650. Vinetakii, Y. P., 1986. Molecular structure of transposable elements in higher plants. S.-Kh. Biol. (4):23-30.
 651. Voinikov, V. K., Rudikovskii, A. V., Polikarpochkina, R. T., 1986. Heat shock proteins in cells of corn suspension culture. Sov. Plant.
 Physiol. 33:169-173.

- Physiol. 33:169-173.
 652. Vu, D. Q., Shamina, Z. B., 1985. Cytogenetic analysis of clones from individual cells and protoplasts of maize. Tsitol. Genet. 19:26-32.
 653. Vuillaume, E., Mathieu, C., Vedel, F., 1986. Complementary studies of mitochondrial DNA of male fertile plants obtained by mutagenic treatment of a cytoplasmic male sterile line of maize. Agronomic 6:109-114.
 654. Magner, E. D., Pleva, M. J., 1985. Induction of micronuclei in maize root-tip cells and a correlation with forward mutation at the <u>yg2</u> locus. Environ. Mutagen. 7:821-832.
 655. Waladde, S. M., Kahoro, H. M., Kokwaro, E. D., Chimtawi, N., 1985. Responses of Chilo partellus to material obtained from susceptible and resistant maize culturars-Electrophysiology and behavior. Insect Sci. Appl. 6:341-350.
 656. Walbot, V., 1985. Inheritance of mutator activity in Zea mays as assayed by somatic instability of the <u>bz2-mul</u> allele. Genetics 114:1293-1312.
 657. Walbot, V., Briggs, C. P., Chandler, V. L., 1986. Properties of mutable alleles recovered from Mutator stocks of Zea mays i. Pp. 115-142 in Genetics. Development, and Evolution: 17th Stadler Genetics Symposium, J. P. Gusafson et al. eds., New York, Plenum Press.
 658. Wan, H., Lee, T.-C., Lu, H.-S., Ho, C.-L., 1986. Cell cycle parameters and accumulation of metaphase cells in maize suspension cultures. Plant Sci. 46:53-61.

- 660. Wang, S.-Z., Esen, A., 1985. Expression of maize prolamins in <u>Bacherichia coli</u>. Plant Sci. 42:49-54. 661. Wang, S.-Z., Esen, A., 1986. Primary structure of a proline-rich zein and its cDNA. Plant Physiol. 81:70-74. 662. Wann, E. V., 1986. Leaching of metabolites during imbibition of sweet corn seed of different endosperm genotypes. Crop Sci. 26:731-733.
- 663. Watson, S. A., Darrah, L. L., Herum, F. L., 1986. Measurement of corn breakage susceptibility with the Stein breakage tester: A collaborative study. Cereal Foods World 31:366-372.
- 664. Watson, S. A., Herum, F. L., 1986. Comparison of eight devices for measuring breakage susceptibility of shelled corn. Cereal Chem. 63:139-141. 665. Waudo, S. W., Norton, D. C., 1986. Pathogenic effects of <u>Pratylenchus scribneri</u> in maize inbreds and related cultivars. Plant Dis. 70:636-638. 666. Weber, D. F., 1986. The production and utilisation of monosomic <u>Zea mays</u> in cytogenetic studies. Pp. 191-204 in G. M. Reddy and R. H. Coe, Jr., eds. (which see).
- 667. Weber, E. J., 1985. Corn lecithin. Pp. 39-56 in Lecithins, B. F. Szuhaj and G. R. List, eds., American Oil Chemists Society, Champaign,
- Tilinois. 668. Weller, R. F., Phippe, R. H., 1986. The feeding value of normal and brown midrib-3 maize silage. J. Agr. Sci. 106:31-36. 669. Weller, R. F., Phippe, R. H., Cooper, A., 1985. The effect of a brown midrib-3 gene on the maturity and yield of forage maize. Grass Forage 669. Weller
- Sc1. 40:335-340.
- Sci. 40:335-340.
 Sci. 40:335-340.
 Sci. 40:335-340.
 Sci. 40:435-340.
 Sci. 40:435-440.
 Sci. 40:445-440.
 Sci. 40:455-440.
 Sci. 40:4
- 673. Werr, W., Loerz, H., 1986. Transient gene expression in a Gramineae cell line: A rapid procedure for studying plant promoters. Mol. Gen. Genet. 202:471-475.
- 674. Wessler, S. R., Baran, G., Varagona, M., Dellaporta, S., 1986. Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J. 5:2427-2432.

- J. 5:242/-2432.
 J. 5:242/-2432.
 G75. West, D. R., Kincer, D. R., Kincer, H. C., Josephson, L. M., 1986. Registration of T-163 germplasm line of maize (Zea mays). Crop Sci. 26:208.
 676. Westgate, M. E., Boyer, J. S., 1986. Reproduction at low silk and pollen water potentials in maize. Crop Sci. 26:951-956.
 677. Westgate, M. E., Boyer, J. S., 1986. Silk and pollen water potentials in maize. Crop Sci. 26:97-951.
 678. Whallon, J. H., Flegler, S. L., 1986. Determination of bound elements in mitotic chromosomes of <u>Zea mays</u> by energy-dispersive x-ray analysis. Cytobios 48:45-61.

- Gyrobios 40:43-61.
 Gyrobios 40:43.
 Gyrobios 40:43.
- 683. Wiegand, R. C., Shah, D. M., Mozer, T. J., Harding, E. I., Diaz-collier, J., Saunders, C., Jaworski, E. G., Tiemeier, D. C., 1986. Messenger RNA encoding a glutathione-S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment. Plant Mol. Biol. 7+235-243

- 7:235-243.
 684. Wielgat, B., Kleczkowski, K., 1986. Protein-synthesizing activity of maize-shoot chromatin. I. Conditions and component requirements. Plant Physiol. 81:404-407.
 685. Wienand, U., Weydemann, U., Niesbach-Klosgen, U., Peterson, P. A., Saedler, H., 1986. Molecular cloning of the <u>c2</u> locus of <u>Zea mays</u>, the gene coding for chalcone synthase. Mol. Gen. Genet. 203:202-207.
 686. Wilson, C. M., 1986. Serial analysis of zein by isoelectric focusing and sodium dodecyl sulfate gel electrophoresis. Plant Physiol. 82:196-202.
 687. Wilson, R. L., Wissink, K. M., 1986. Laboratory method for screening corn for European corn borer (Lepidoptera: Fyralidae) resistance. J. Econ. Entopol. 79:274-276.
 688. Wiseman, B. R., 1985. Types and mechanisms of host plant resistance to insect attack. Insect Sci. Appl. 6:239-242.
 689. Wiseman, B. R., 1986. Development of resistance in corn and sorghum to a foliar- and ear/panicle-feeding complex. Proc. Annu. Corn Sorghum Res. Conf. 40:108-124.
- 689. Wiseman, B. R., 19 Conf. 40:108-124.
- 690. Wiseman, B. R., Lynch, R. E., Mikolajczak, K. L., Gueldner, R. C., 1986. Advancements in the use of a laboratory bioassay for basic host plant resistance studies. Fla. Entomol. 69:559-565.
- 691. Wiseman, B. R., Widstrom, N. W., 1986. Mechanisms of resistance in 'Zapalote Chico' corn silks to fall armyworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 79:1390-1393.
- Bitomol. Situation (1991) 300-1050.
 Bitomol. Situation (1991
- 693. Witt, S. C., 1986. Germplasm. The World & I (7):240-249. 694. Wu, J. L., 1986. Breeding haploid corn by anther culture. Pp. 149-164 in Haploids of Higher Plants In Vitro, H. Han, Y. Hongyuan, eds., China Academic Publ., Beijing.
- 695. Wu, Y. V., Sexson, K. R., Lagoda, A. A., 1985. Protein-rich alcohol fermentation residues from corn dry-milled fractions. Cereal Chem. 62:470-473.
- Kie, Y., Chen, L., Dai, J., 1986. Study of somatic embryogenesis and plant regeneration in maize. Acta Genet. Sin. 13:113-119.
 Yamada, M., Ishige, T., Ohkawa, Y., 1985. Reappraisal of Ashby's hypothesis on heterosis of physiological traits in maize, <u>Zea mays</u> L. Euphytica 34:593-598.
- 698. Yamazaki, M., Watanabe, A., Sugiyama, T., 1986. Nitrogen-regulated accumulation of mRNA and protein for photosynthetic carbon assimilating enzymes in maize. Plant Cell Physiol. 27:443-452. 699. Yashvili, M. N., 1985. Comparative electron microscopic study of the leaf mesophyll in Zea mays with cytoplasmic male sterility. Izv. Akad.
- HOUR MILE, OOK SET. BIOL. 11:318-323.
 700. Yashvili, M. N., 1985. Comparative study of nucellus cell ultrastructure in Zea mays with cytoplasmic male sterility. Izv. Akad. Nauk Gruz. SSR Ser. Biol. 11:242-247.
- 701. Yeh, C. C., 1986. Studies on rusts on maize (Zea mays). J. Agric. Res. China 35:81-93. 702. Yu, S. J., 1986. Host plant induction of microsomal monooxygenases in relation to organophosphate activation in fall armyworm larvae. Fla. 702. Yu, S. J., 1986. Hos Entomol. 69:579-587.
- 703. Zack, C. D., Ferl, R. J., Hannah, L. C., 1986. DNA sequence of a shrunken allele of maize--evidence for visitation by insertional sequences. Maydica 31:5-16.
- 704. Zambezi, B. T., Horner, E. S., Martin, F. G., 1986. Inbred lines as testers for general combining ability in maize. Crop Sci. 26:908-910. 705. Zelenskii, M. A., Ngo, H. T., 1985. Correlations between the structural elements of the yield of maternal forms and the level of heterosis in maize hybrids. Dokl. Vses. Ordena Lenina Ordena Trud. Krasnogo Znameni Akad. S.-Kh. Nauk Im V. I. Lenina (9):11-13.
 706. Zeng, M., Yang, T., 1985. Inheritance on the zymogram bands of isozymes and proteins in different tissues of maize (Zea mays). 1.

- Electrophoretic zymograms of peroxidase and cytochrome oxidase isozymes. Acta Genet. Sin. 12:119-125. 707. Zhang, J.-H., Liu, Z.-M., 1985. Effect of alloendosperms on peroxidase isozyme of corn (Zea mays) embryo buds. Acta Bot. Sin. 27:553-555. 708. Zhang, Z.-L., Dong, G.-Y., Zhang, H., Lu, Y., 1985. Fluorescence banding in several species of plant. Acta Bot. Sin. 27:460-464.

Bnl

br3

bt2

hl

VIII. SYMBOL INDEX

Les*-1449 50	mtDNA-cob 107 148	NPI34 144	NPI216 140	NPI332-Pep 89 107	pg12 96 144
Les*-1451 38 51	mtDNA-coxI 107 148	NPI35 140 NPI36 134	NPI217 140 NPI218 142	114 144 NPT333 134	pg13 115 115 pg15 50 106 115 128
Les*-1461 50	mtDNA-coxIII 148	NP137 142	NPI219 132	NPI335 140	pg16 50 106 115 129
Les*-2005 51 114	mtDNA-ct5S 148	NPI38 138	NPI220 142	NPI337 130	pg*-219 50
Les*-2008 50	mtDNA-ctios 148	NPL39 142 NPT40 128	NP1221 130 NP1222 89 144	NP1338 132 NP1339 142	pg=-553C 50
Lfy1 115 115	mtDNA-ND-1 148	NPI41 136	NPI223 138	NPI340 130	Pgd1 106 138 138
1g1 29 33 48 106	mtDNA-ORF13T 90 107	NPI42 132	NPI224 128	NPI341 136	Pgd1-2 19
130 130	mtDNA-ORF25 57 90	NPI43 142 NPI44 140	NPI225 128 NPI226 128	NPI343 89 144 NPI344-Tot3 89 106	Pgd1-3.8 19 Pgd2 106 132
Lg3 6 106 132	mtDNA-R1 107 148	NPI45 140	NPI227-Ssul 49 89	142	Pgm1 114 129
LHCP 107	mtDNA-R1(S1) 107	NPI46 130	106 134	NPI345-Tpi4 89 106	Pgm2 136 136
1i1 146	mtDNA-R2 148 mtDNA-R2(S2) 107	NPI47 140 NPT48 140	NPI228-Adh2 89 105	132 NPI346-To15 89 106	pgspt*-1269A 50 Pb1 115 134
1nl 115 138	mtDNA-S1 107 107	NPI49 130	NPI229-Pdk1 89 106	136	Ph11 106 114 128
102 144	mtDNA-S2 107	NP150 142	138	NPI347-EMu 89 106	129
10C1 115 101 115 134	mtDNA-513 148	NPI51-AI 89 106 132 NPI52 132	NP1230-FdK2 89 106 142	NPI348-A1r1 89 106	Ph11-4 80 Ph11-5 86
Lsc1 28 34 35 106	mtDNA-traD-1 148	NPI53 136	NPI231-Mel 89 106	130	Phy1(NPI251) 89 106
Ltel 27	mtDNA-trnD-2 148	NPI54 128	132	NPI349-Alr2 89 106	128
Lte2 27 115 130	mtDNA-trnfM 148	NP156 134 NP157 130	NP1232 146 NP1233 136	NPI354 136	136 Phy2(NP1369) 89 106
lte-0 27	mtDNA-trnI 148	NPI59 140	NPI234 128	NPI356 130	pil 115 115
1te-b 27	mtDNA-troL 148	NPI60 136	NPI235 138	NPI357 128	p12 115 115
1ty1 115	mtDNA-trnM-2 148	NP161 130 NP163 138	NP1236 128 NP1237 136	NPI361 138	P10 //9 P11 106 138 138
Iul 136	mtDNA-trnM-3 148	NP164 142	NPI238 128	NPI368-Act1 89 106	P1p 106
1w1 23 106 114 129	mtDNA-trnP 148	NPI66 134	NPI239 130	NPI369-Phy2 89 106	P1p1 35
1w3 115 137	mtDNA-trnV 148	NP168 140	NPI240 140 NPI241 128	NFI370-P1 89 106	Pn1 141
1w4 115 134	mtDNA-trnW 148	NP169 142	NPI243 128	NPI400 140	pol 138
mall 115 144	mtDNA-trnY 148	NPI70 132	NPI244 130	NPI401 128	ppg1 50 106 115 137
Mc1 115 115 Mc1 115 115	mtDNA-URF13T 57 58	NPI72 142	NPI248-B1 89 106	NP1402 130 NP1403 144	pr1 34 47 58 96 106
Mdh1 142	107	NP173 134	130	NPI404 128	106 136 136
Mdh2 106 138 139	Mu 7 9 10 11 17 26	NPI74 136	NPI249 132	NPI405 130	pro1 51 78 106 115
Mdh4 114 128 129	Mul 6 14 53 77 102	NP175 136 NP177 134	NPI251-Phv1 89 106	NPI407 128	Prot1 129
Mdh5 136	106 107	NP178 132	128	NPI408 136	ps1 39 47 136
Mel 106 133	Mul.4B37 107	NPI79 142	NPI252 138	NPI409 136	Pt1 138
132	Mu2 53	NPI81 142	NPI255 130	NPI412-Sod4 89 106	Px1 106 115
Me2(NPI330) 89 106	Mut 29 115 130	NP182 128	NPI255 128	128	Px2 115
meil 115 115	Mv1 115 115	NP183 132 NP184 89 129	NPI256 136 NPI257 132	NPI419 140	Px3 141
Mer 29	na2 136	NPI85 146	NPI258 128	ol 32 106 135	Px5 115
Mer2 35 106	NCS2 45 107	NP186 89 144	NPI260 142	02 140	Px6 115
mg1 96 107 115 115 m11 128	NCS3 45 107	NPI88 132 NPT89 132	NP1262 128 NP1263 140	05 140	Px7 115 Px8 115
mmm1 115 129	nec2 47 106 128	NPI90 132	NPI264 146	06 78	Px9 115
mnl 130	nec3 136	NPI91 132	NP1265 138	07 147	py1 34 106 138
mn2 140 mo*-866201X 6	nec4 50 106 115 130	NP192 146 NP193 128	NPI266 144 NPT267 134	09 115	py2 50 106 115 129
mn*-866248U 6	nec6 50 106 115 136	NPI94 132	NP1268 142	oll 115	pyd1 115 144
Mof*-1 52	nec7 50 106 115 137	NP195 134	NPI269 130	012 115 115	r 8
Mo1*-2 52 Mp11 23 106 114 115	nec*-493 50 nec*-5168 50	NP196 128 NP197 89 144	NP1270 134 NP1271 130	013 115 0e1 146	r1 45 /5 10/ R1 146 146
129	nec*-642A 50	NP198 89 144	NF1272 128	ora2 115 115	r1-784201 5
Mr 115 144	nec*-756B 50	NP199 128	NPI273 130	ora3 115 115	r1-784214 5
ms1 50 87 115 138	NOR 101 138	NPI100 138 NPI101 138	NP1274 130 NP1275 136	oro2 115 115	r1-817113 5
ms2 144	NPI 49	NPI102 138	NP1276 142	Orom1 115 115	r1-817120 5
ms3 115 132	NPI1 142	NPI103 142	NPI277 140	orp1 44 49 106 115	r1-817123 5
ms7 87 140	NPI2 138	NPI104 134 NPI105 146	NP1279 128	orp2 44 107 115 146	r1-817371 5
ms8 24 51 87 106	NPI3 142	NPI106 128	NPI280 138	oy1 146	r1-817382 5
142 min 9 87 128	NPI4 130 NPI5 140	NPI107 142	NPI281 128 NPI282 136	P1 106 128 P1(NPI 370) 89 106	r1-826013 5
ms10 87 146	NPI6 134	NPI109 128	NPI283 140	P1-M0 100	r1-826016 5
ms11 146	NPI7 138	NPI110 142	NPI284 134	P1-RR 100	r1-826017 5
ms12 87 128 ms13 87 136	NP18-Bz1 89 144 NP19 138	NPI111 140 NPI112 140	NP1285 145 NP1286 128	P1-WR 35 46 47 94	r1-826022 5 r1-826026 5
ms14 114 128	NPI10 128	NPI113 140	NPI287 130	100 106	r1-826143 5
ms17 128	NPI11 130	NPI114 142	NPI288 136	P1-WW 47 100	r1-844523 5
Ms21 115 115	NPI12 134 NPI13 132	NPI115 136	NP1289 134 NP1290 146	P1-WWB 40 P1-WWW 94	r1-846055 5
ms22 115 115	NPI14 89 144	NPI118 130	NPI291 144	paml 115 115	r1-846066 5
ms23 115 115	NPI15-Sh1 89 107	NPI119-Hsp1 89 106	NPI292 134	pam2 115 115	r1-846067 5
ms28 115 115	NPI16-Wx1 89 107	NPI120 128	NP1293 144 NP1294 130	pb1 113 138	r1-846074 5
Ms41 50 51 106 115	144	NPI121-Css1 89 107	NP1295 136	Pd1 33 106	r1-846085 5
135 me43 106 115 142	NPI17 134 NPI18 134	114 144 NPT122 130	NPI296 132 NPI297 130	pd1 115 115	r1-846095 5
Ms*-1995 50	NP119 128	NPI123 130	NPI298 130	Pd3 34 106	r1-846142 5
Mscl 50 106 115 129	NPI20 128 142	NPI124 138	NPI299 128	Pd4 34 106	r1-846155 5
Msc*-791A 50	128 121-Adh1 89 106	NP1201 132 NP1202 132	NP1301 142 NP1304 128	Pd6 34 106	r1-857299 5 r1-857305 5
Msc*-1124B 50	NPI22 146	NPI203 134	NPI306 146	Pd11 35	r1-857325 5
Mst1 146	NPI23 140 NPI24 129	NPI204 142 NPI205 128	NPI315 142 NPI316 140	Pdf1 115 115	r1-857332 5
mtDNA-5S 107 148	NPI25 89 144	NPI206 142	NPI320 130	Pdk1(NPI229) 89 106	r1-857343 5
mtDNA-18S 107 148	NP126 140	NPI208 134	NPI321 146	138	r1-857345 6
mtDNA-265 107 148 mtDNA-atn6 57 107	NP127 134 NP128 140	NP1209 89 144 NP1210 130	NPI327 146 NPI328 142	Pdk2(NPI230) 89 106 142	r1-857349 6 r1-857350 6
148	NPI29 140	NPI211 89 144	NPI329 130	pel 115 115	r1-ch:-bol2 107
mtDNA-atp9 58 148	NPI30 140	NPI212 132	NPI330-Me2 89 106	Pep 107	rl-ch:-Co-op 107
mtDNA-atpA-1 148	NP132 130	NPI213 136 NPI214 128	130	114 144	r1-g 94
mtDNA-atpA-2 148	NPI33 142	NPI215 132	NFI332 140	pg11 96 138	R1-g:8 107

R1-g:8pale r1-g:1557-2 r1-g:nc3-5 107 107 Spc*-1376 107 r1-m1 107 r1-m3 107 r1-m9 107 rl-r 58 75 spt1 r1-r:n35 107 r1-r:n46 107 r1-r:n101 107 r1-r:n142 107 spt2 sr2 R1-r:standard 107 R1-sc:124 107 R1-sc 107 ral 29 101 140 ss* ra2 7 29 132 ra3 29 134 114 129 115 138 rdl rd2 106 102 103 106 TDNA rDt 87 132 87 144 Rf1 Rf 2 115 131 115 130 Rf3 Rf 4 Rgl 132 19 106 138 redl Rgd2 50 106 115 136 Rgd*-1445 50 115 115 12° rgol rhml 115 134 Ril rMrh 102 115 146 Rol Rp1-a 37 Rp1-b 38 38 Rpl-c Rp1-c-k 3 Rp1-d 37 Rp1-d'-5 Rp1-d 37 Rp1-d'-5 38 Rp1-d'-21 38 Rp1-f 38 Rp1-g 37 T3-9c 51 T4-9(5657) 37 Rp1-td Rp3 T4-9(6502) 38 132 134 Rp4 115 146 Rp5 T5-9a Rpp9 40 115 146 rRNA5S 10⁴ T5-9c 51 T6-9a 51 T6-9a T6-9b Rs1 115 rs2 128 T4-7(4698) T7-9(4363) T7-9a 51 132 rt1 T8-9(6673) ruq Sadl 4 5 6 Sad1 146 sct*-206B 50 Sdw1 50 106 115 142 Sdw1 50 106 1 Sdw*-1592 50 sel 115 115 sen1 115 132 sen2 115 140 115 128 sen3 115 115 sen4 115 130 sen5 115 136 103 107 115 sen6 sftl 115 133 Sg1 115 sh1 2 3 5 43 44 47 55 56 60 77 Sh1 107 sh1 114 144 136 Sh1(NPI15) 89 107 144 sh1-bz1-m4 55 56 sh1-m5933 57 102 sh2 9 12 13 62 133 sh4 96 106 137 128 sh4 96 106 137 96 106 sh5 sin1 138 sin1 61 sk1 130 Sks1 115 130 133 TB-3Lc 140 100 138 811 TB-3Ld sml 107 115 146 Sn1 TB-3Lf Sn1-bol3 75 Sn1-s 75 Sn1-w 75 75 TB-3Lg TB-3Lh TB-3L1 Sod1 86 115 Sod2 86 140 TB-3L1 TB-3Lk
 Sod2
 50
 140

 Sod2(NPI419)
 89
 106

 Sod3
 86
 115

 Sod4
 86
 115
 TB-3L1 TB-3Lm TB-3Sb Sod4(NPI412) 89 106 132 sod4(NPI412) 89 106 128 Spcl 50 106 115 132 spc2 50 106 115 129 spc3 50 106 115 133 TB-4Lb TB-4Lc TB-4Ld TB-4Le

Abbe E C 40 Abbott A G <u>90</u> 107 rl Abe M r2 Abelson P H 1 Abou-Mandour A A Abou-Mandour A A r Abramyan L Kh r31 Adams N J r26 Agboire S A r34 Aggarwal K N r39 Agrawal K N r567 Aguilar R r18 Alam M S r145 Alberghina L r90 Albertsen M C 91 1 Albrecht K A r4 91 114 Albrecht K A r4 Alcazar-A J J r5 Alexander D E 97 99 r446 Alexandrescu V r6 Alitalo K 72 Allagikar S B 26 Allard R W 48 r42 Allen R N r423 Allen K N r423 Ampofo J K O r7 r8 r9 Ananiev E V r10 Anderson E G 40 96 Anderson P C r225 Anderson R C r11 r12 Andrew R H r379 Angeles-A H H r5 Antonovics J r411 Antsibor I A r382 Aoyagi K r13 Arai S r2 Araujo S M C D r309 Ardigo A r330 Argos P r465 Armstrong C L 75 Arturi M-J Atkins R E r197 Atkinson B G 72 Atlin G N Aulicino M B <u>65</u><u>69</u> Avila G r14 Axtell J D r207 Badaev N S r544 Badaeva E D r544 Baeshin N A Bagnara D r r15 r16 Bagrationi N N r17 Bailey B A 39 40 Bailey-Serres J r319 Baiza A r18 Baker B <u>41</u> <u>43</u> r19 Bakheit B R r373 Balazs M r289 r290 Ball Y 1 Balmer E r574 Bandurski R S r203 r291 r421 Banks J 107 r20 Bansal R K r21 Banzatto D A r3 Banzatto D A r309 Baran G r674 Barciszewska M Z 106 r22 Barciszewska M Z 106 Barciszewski J r22 Barkan A 107 r23 Barkar M r225 Barlow FW r24 Barnabas B r480 r481 Barriga-B P r25 Barry D r26 Barry D r26 Bartkowiak E r27 r28 Baaso B 76 Basso B 76 Baudet J 72 r29 r402 Baum JA 86 Bauman LF 45 r605 r638 Bauman L F 45 r605 r638 Beach L 114 Beale S I r549 Beall F D r519 Beckert M r111 Beckert J B 19 45 47 48 50 85 86 91 92 94 114 Beckert M R r230 r231 r263 r263 Bedinger P 107 149 r30 r560 Beglaryan N P r31 Behrendsen W 61 107 114 Belkova L S r32 Belluman R 44 Belousov A A r33 r34 Below F E r35 Bemiller J N r86 Bendbow E 1 Bennett M D r313 r314 Bennetzen J L 14 Benz B F r78 r240 r560 r78 r240 Benz B F

Berjak P r36 Bernard L 77 Bertani A 75 Bertoia L M 69 Berville A 70 Berzonsky W A 107 r37 70 r38 Bettendorf A R 24 Bettendorf A K 24 Bhalla S K r39 Bhan M K 93 Bhat B K 93 Bhatia C R r559 Bianchi A r40 r41 r357 r559 Bianchi M W 78 Bieniek J r404 Bietz J A r461 Bijlsma R r42 Binelli G 77 r43 r160 r540 Birchler J A 114 r44 Bird R M 51 85 86 114 Bishop 72 Bizvaev E F r629 Bjarnason M r45 r144 Blackwood M 80 Blad B L r168 Blaich R r46 <u>61</u> 39 Blair D Blair D bl Black V C A 39 Bland M B 149 Bland M M r47 r560 Bockholt A J 39 r543 Bocsholt A J 39 r543 Bogenschutz T G 107 r Bogenschutz T G 107 r 107 r48 Bogorad L r153 r569 r570 r592 Bollinger E K r49 Bommineni V R 71 72 Bonaparte E E N A 98 Bonhomme R r106 Bonner J r237 Boothe J G <u>71</u> Borisov V N r244 Bornstein M S r10 5 r136 r50 Boston R S Botez C r51 Boudet A M r186 Boudet A r186 Bourdu R r135 r499 Bouthyette P Boutry M 73 Bowen B r420 Boyer C D r12 r185 Boyer C D r129 Boyer J S r676 r677 Boyko E V r544 107 r52 Bradley D Branden C-I r53 Branca C r54 Brandolini A r55 Branson T F r56 r57 Braun C J 107 149 r58 Brazil M 1 Brazil M 1 Brears T 107 r59 Breimyer H r226 Brennicke A 45 149 r243 Brettell R I S 59 90 106 r60 Brewbaker J L 37 r61 Briggs C P r657 Briggs R W 24 87 Brink R A 100 Brown G G r152 Brown G L r152 Brown G L r70 Brown J W S <u>55</u> r62 r307 Browne C 1 Brunini O <u>29</u> r342 Bryce W H <u>55</u> Buddenberg r63 Buddenhagen I Bullard R W r64 Buntin G D r65 Burkhardt J r212 Burnette D C 107 Burnham C P 107 r66 Burnham C R 40 46 100 102 Burr B 22 56 89 r67 r142 Burr F A 22 56 r67 r142 Buseard J B r311 r312 Butler L G r454 Buxton D R r4 Caboche M r87 r88 Calinski T r69 Calvert O H 96 Camargo M B P D r34 Camberato J J r447 -342 Cambillau C r53 Campos N r625

Camussi A 7 Cannon R 89 76 r68 r69 Cannon R E 86 r166 Canton T r Cantone F A Cantrel C r638 r478 Cantrell R P r562 Carballo-C A r5 r223 r333 Carceller M S r268 Carlson J E r70 Carlson W R r71 Carson M L r680 r681 Casale W L r172 Caslick J W r49 Castlek J W r49 Castleberry R M 27 Castroviejo M r592 Cavalieri A J r250 Ceppi D r174 Ceska O 100 Chaboute M-E r75 r482 Chaboute M-E r75 r482 Chatllou S r407 Chandler V L 6 14 21 54 89 106 107 r72 r73 r614 r657 Chang M-T 74 <u>91</u> <u>92</u> 106 107 Channon P r377 149 Chao S Chappell K 1 r74 Charlesworth B Charmley P r498 Chaubet N r75 r482 Chen C H r76 Chen C H 776 Chen L r696 Cheng D 82 Cheng P C <u>104</u> r77 r78 Cherel I r87 Chernyshev A I r10 Chiang H C r320 Chiang H C r320 Chimtawi M r655 Chitano P r505 Chizmar B r412 Cho H Y r505 chourse provided the second se <u>56 57</u> r80 Chowdhury A K r99 Chuchmiy I P r412 Chuchmiy I P r412 Chuchtai S R <u>98 99 100</u> Clark J K 106 r83 Clark J K 106 783 Close K 84 Coats J R 7198 Cobb B G 39 784 Coe E H Jr 45 46 47 49 58 92 94 106 107 114 116 r85 r256 r312 r325 r418 r488 r506 r507 r559 r607 Colbert T R r267 37 r423 71 Coleman A W Colless J M Collins G B Collins G N Collins P 89 101 Collins G N 101 Collins P 89 Commean V L r86 Commere B r87 r88 Compagno C r90 Compton W A r89 r1 r89 r155 r422 r446 r422 r446 Conde M F r214 Cone K C 22 Consoni G 75 107 Cook W 44 106 Cooper A r669 Cooper A r669 Coraggio I r90 Cormack J <u>4</u> Cortadas J r472 Cortez-Mendoza H 4 r199 Coupland G 41 43 Courage U 41 Crafts-Brandner S J r35 Crookston R K r251 Crosbie T M r228 r229 r618 Cross H 2 r91 r92 Crowe T G 73 Cruse R M r618 Cruse C D Cruz C D r149 Cruz C D r149 Cruz I r430 Cuellar R E r163 r169 Cullis C A r512 Cuypers H r470 Czuchajowska Z r493 r494 r495 r496 Dabrowski Z T r9 r144 Dai J r696 Dale R M K 149 r234 r505 Dalla Vecchia F Dang L H r93

Danilenko N G r94 Dankov T G r95 r2 Daramola A M r96 Darmalingam S r19 r216 r271 r197 Darnell R E r423 Darrah L L 53 r97 r98 r151 r199 r663 r99 Das S N Dashek W V 74 Davidson D Davies J W 93 r191 Davies M S r393 r503 Davis D W r100 Davis F M 107 149 r101 Dawson A J r102 r103 Day A D Day A D r103 Dayton R S r107 Debnath S C r104 deGroot B r559 Delcasso D r189 Dellaporta S 72 r104 72 102 r674 Delseny M r189 DeManincor E V r43 DeMason D A r487 Dempsey E 25 26 78 Dennis D T r299 r487 Dennis E S r60 r105 r464 r526 Derieux M r106 r258 Deutsch J r448 Dewald C L r107 57 58 90 107 Dewey R E 149 r108 Dhillon B S r10 r346 r443 r577 r109 r270 Diallo N r270 Diallo A 0 r144 r448 Diaz M E G r166 Diaz-collier J r683 Diem C D r110 Dieu P r111 DiFonzo N D r112 r351 r357 Dini M r36 Distanova E E r177 Doebley J F 64 67 r113 r239 Doerfler W 6 Dolbeer R A 107 r114 r115 Dolinka B r110 Dolinka B r110 Dollinger E J 103 107 Dong G-Y r708 Dooner H K 56 81 107 r116 r117 Dooner H K 56 81 107 r116 r117 r118 Doring H-P 102 r119 r378 Dormann-Przybyl D 107 Dougherty W G 14 Doyle G G r121 Draganic M r122 Dube S D r529 Dubert F r295 Dubure r120 149 Dubert F F255 Duburcq J B r258 Dudley J W 4 Dunbar S M 149 r243 Dunwell J M r123 Durbey S L Dutka F r r124 Durbey S L F124 Dutka F r288 r289 r290 Duvick D N 60 r125 r126 r127 r127 Duysen M r141 Dwyer L M r128 r602 Dybas L r141 Dyer T A 149 Eagles H A r217 Earle E D 60 r586 Earp C r399 Eberhart S 97 Echeverria E r Echeverria E r129 r130 Echt C 52 94 95 96 106 Eckenrode V K r131 Edmeades G O r45 r254 Edwards M D 89 r670 Edwards R r132 Efron Y r133 r144 r145 r278 Ehling M r75 r482 Eisenberg A r364 Eklund H r53 El-Sayed S A r15 El-Sayed S A r15 Elman G J r134 Elrahman N A r135 Elshouny F M r6 Emam A r605 Enaleeva N Kh r644 r640 r136 Engeman R M

England D J <u>51</u> English J <u>81</u>107 r117 Enomoto S-I r137 Erbach D C r618 Erfanifar B 100 Erickson S S 74 Erickson S ... Erygina E P r138 Escote L J 107 r139 Esen A r140 r660 r661 Eskins K r141 Eskridge K M r597 r598 r599 r600 Eubanks M 79 Evans M L 7397 Evens M L r397 Everett H L r321 Everett L A' r144 Evola S V r142 Fahey J W r143 Fajemisin J M r144 r145 τ278 Fakorede M A B r146 Farady L r384 Farina M P W r377 Fauron C M R <u>90</u> 107 149 rl Fausey N R r147 Fedoroff N 22 43 81 89 r19 r20 Feiler H 45 107 Feix G 55 r62 r307 r622 Feldman L J r148 r148 Ferrao R G r140 Fewster Ferrao R G r149 Fewster P 70 72 Filev D S r150 Filho V N r165 Finnegan P M 107 107 r152 Finnegan r M Fischer K S r25 Fischer M r162 Fish L E r153 Flannigan B A r563 Flavell R B Flegler S L r154 r678 Fletcher G B 10 Fliss A E Jr 58 Flowerday A D 75 109 r597 r598 r599 r600 r601 Fomchenko N S r639 Fondren W M Fong F 40 r398 40 Forde B G 58 73 Forde B G 58 73 Fotiadis N r269 Fourie A P r315 Fox T D 149 r319 Fraj M r155 72 Franchini G Franken P Franken P 44 Frascaroli E r305 Fredericksen R A <u>39</u> 40 Fredericksen R F Freeling M 14 24 42 89 r76 r202 r323 r645 Frei O M 107 r156 r157 Freire E C r158 Friedemann P D 5 Fromm M E 107 r159 Frommer W-B 44 107 Frontczak J r405 Frontczak J r405 Frova C <u>76</u> 77 r160 r436 r540 r541 r540 r544 Fry S C 26 Furlani P R r3 r342 Gabay-Laughnan S J Gabedava L Sh r161 r139 Gadal P r88 Gafny R r162 Gainy K 1162 Gagianas A r269 Galangau F r87 Galili G r163 Galinat W C 34 85 100 $\frac{101}{\text{Gama E E G E}}$ r165 Gamain C L r165 Gardia-G J C r167 Gardia-G J C r167 Gardiaer J 49 Gardner B R r168 Gardner C 0 4 r196 r199 r260 r491 r597 r598 r599 r600 r601 Gatenby A A r52 r169 r170 Gavazzi G 75 107 r171 r351 Geiger H H r374 r375 r376 Geisler G r590 r591 Gelvin S B r176 Gendloff E H 10 107 r172

IX. AUTHOR AND NAME INDEX
Gengenbach B G 58 59 87 90 r173 r339 Genovesi A D 71 Gentinetta E 107 107 r174 r334 r449 r497 r648 Gerlach W L r105 r526 Gevers H O r36 Ghosh P D r390 r460 Giegel D A r498 Giegel D A r498 Gierl A r283 r357 r470 Gigot C r75 r482 Gilbert W r352 r420 Ginsburg H 149 r234 Girardin P r175 Glackin C A r237 Goldman S L r187 Goldsbrough P B r176 Goldsbrough P B r176 Goldsbrough T N 106 r177 r276 r177 r276 Golynskaya E L r178 Gonzalez-H V A r179 r434 Gooden D 0 r586 Goodman M M 98 r113 r156 r157 r180 r181 r670 Gorinstein S r182 Goss J A 36 r177 r276 Goss J A 3 Goto K 79 Gracen V E Jr r184 Gracen V E r183 r185 r321 Grant D 61 Graves A C F 107 r187 Green C E 38 75 87 r511 Greenberg J M r188 Grellet F r189 Greyson R I 69 71 70 r450 r400 r321 Grand C r186 Grant D 61 r450 r492 Gridi-Papp I L 31 Grienenberger J-M 149 r353 Grigorenko N V r190 Grimsley N 107 r191 Groot J J R r192 Groth J V r503 Grout T Groth J V r505 Grudt T 55 Grula J W r237 Gruzdev A D r276 Gu M G r193 Gueldner R C r690 Gutllemaut P 149 r353 Gulati A τ194 Gullons A M 70 Gulyas S r444 Gurjas S r444 Gunasekaran S r195 Guo P r196 Gupta M 57 107 Guthrie W D r184 r197 r198 r247 r248 r280 r281 r282 Gutierrez-Gaitan M A r199 Gynkul T N r287 Gyulavari O r383 r384 Hageman R H r35 Hageman K H r35 Hagemann R r200 Hainzelin E M r201 Hake S 24 42 r202 Hall G E r496 Hall P J r203
Jane C
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140< Hansen M r212 Hanson D K r319 Hanson M R r213 r214 Hanson W D r215 Hanson W D r215 Hao F S r216 Harahwa G r679 Harberd N 24 106 114 Hardacre A K r217 Harding E I r393 r565 r683 Harlan J R r326 Harn C 54 Harpster M H 107 r218 Hart L P r172 Hartings H r357 Hartung W r3 Hartings H r357 Hartung W r3 Haug A r608 Hauswirth W 149 Hawes M C r219

Hawk J A r37 r38 Hazelwood D 53 Heidecker G r220 Heim D r453 Helentjaris T 49 61 86 89 90 107 114 115 r221 r222 r222 Helm B r171 Helm B r1/1 Hemmingsen S M r299 Hernandez-L A r223 Herum F L r663 r664 Heslop-Harrison J S r224 Hess D 36 Hibberd K A 87 r225 Hibberd K A 87 722 Hill L r226 Hirasawa E r227 Hironaka C M r565 Hirachberg J r556 Ho C-L r658 Ho T-H D 89 r326 r527 Hoard K G 107 r228 r229 Hodge T P 148 149 r101 r234 r332 Hodges T K 107 r230 r231 r241 r263 r264 Hoegemyer L C 98 Hohn B r191 Hohn T r191 Hoisington D A 1 48 49 Hoisington D A 1 48 49 51 94 95 106 115 116 Hole D J 39 Hollingworth M D 82 Holmes-Baker C 55 Hong J K r451 Hooker A L 40 Hoppe D C r232 Horgan R r415 Horner E S r233 r704 Horrocks R D r267 Hostos E L de 149 Houchins J P 107 149 Houchins J P 107 149 Houchins J P 107 149 r234 Howe C J 149 Hristov K r235 Hristova P r235 Hu W W L 149 Huang D r236 Hudspeth R L 107 r237 Huet J-C r29 r402 Humaydan H S 59 70 Humphreys T r130 Hunt M 44 Hunt M <u>44</u> Hunter B r372 Hunter R B 107 r238 r484 Iltis H H 64 67 78 86 r78 r239 r240 Imbrie C W r231 Imbrie-Milligan C W r241 Implie Milligan C W 724 Inglik P V 7412 Inoue M 7385 Iriarte T C 7242 Isaac P G 107 149 r101 r243 r319 Itate T 672 r243 r319 Ishige T r697 Ishijima S r245 Iskander F Y r399 Islam T M T r448 Jatimliansky J-R r249 Javorsk E r525 Jaworsk E G r683 Jayaram Ch 4 r537 Jeaknik G 149 r353 Jenkins M T 40 Jensen S D r250 Jeppson R G r251 Jiayang L r252 Jigeng L r252 Johnson D Q r524 Johnson D C Jr r254 Johnson J C Jr r255 Johnson J C Jr r254 Johnson J C Jr r255 Johri M M 27 r256 r488 Jolivet E r407 Jones A M r479 Jones C A r257 Jones R J r209 r210 r211 Jones V P 149 r102 Jong S K r451

Joos H-J 44 Jordan M-0 r175 Josephson L M r675 Jotshi H C 2 Jotshi P N 93 Juguet M r258 Jupe E 23 Kaczmarek Z r69 Kahler A L 106 107 108 r42 r57 r259 r260 r261 r498 Kahoro H M r655 Kalman L r262 Kamo K K r230 r231 r263 r264 r264 Kang M S r265 r266 r267 Kang Y K r451 Kannan S r501 r502 Kantolic A r268 Kapulnik Y r162 Kapusta I B r273 Karasawa M <u>4</u> Katagiri F r245 Kata J 100 Katagiri F r245 Kato T A 100 Katsantonis N 108 r269 Katsantonis N 108 r26 Katsuki H r245 Katsuni M r388 Kaur G P r270 Kawata E E r163 Kemble R J r70 Kennell J C 57 107 Kernell J L 57 107 Kersicle J L r649 Kermicle J L 48 r118 Key J L r649 Khadr F H r144 r278 Khaty F H r144 r278 Khatylyuva L U r272 r273 Khehra A S r109 r274 r346 r443 r577 Khozina I F r275 Khristolyubova N B r276 Khuong N T r277 Kieft H r547 Kiesselbach T A 36 Riesselbach T A 36 Kikuchi Y 90 Kim S K r144 r145 r278Kincer D R r675Kincer H C r675Kindiger B 44 91 Kindler D r197King S B r637King S B r637King S B r637 Kingsbury J 22 r20 Kirleis A W r207 r605 Kisselev L L r22 Kleczkowski K r684 Kleczkowski L A r279 Klenke J R 108 r280 r281 r282 r282 Klonglan G r226 Kloppstech K r556 Klosgen R B 107 r283 Klosgen R B 107 r283 Klyuchko P F r34 Knapp S J r284 Knutson C A r285 Koeppe D E 59 Koh-Knox C r638 Kokubu T r543 Kokwaro E D r655 Kolmer J A r286 Kolterman D A r240 Komarova G E r287 Komives A v r288 Komives T r288 r289 r290 Komives V a r290 Komives V r289 Komoszynski M r291 Komoszynski M r291 Kondrat'ev M N r29 r292 Konopska-Waliszkiewicz L r293 Konstantinov Yu M 61 Koon E C r398 Kopczynski C C r294 Koranne K D 2 Koscielniak J r295 Koshkin E I r629 Kossel H r120 Kostyshin S S r432 Kotsyuban A I r150 Kovacs A r296 r455 r456 Kovacs G r383 Kovacs-Schneider M r297 Kowalewski S 1 Kozak 41 Kridl J C 149 Krishnan H B r298 Krivi G G r565 Krivov N V r341 Kronenberger J r87 Kropff M J r192 Kruger N J r299

Kruse L I r421 Krylov S V r32 Kuehnle A R 60 r32 Kuehnle A R 60 Kumar D r300 r301 Kumar H r302 Kunakh V A r544 Kunze R 41 41 Kushaer S R r401 Kuzneteer Kuznetsov L V r27 Kwack P " Kwack B H 37 Kwolek W F r26 Lacy L R Lacy L R r212 Lacy W B r212 Lagoda A A r695 Lai F S r494 r495 r496 Lamb B C r303 Lamb B C r303 Lambert R J <u>96</u> 97 r554 Lamkey K R 108 r304 Langhey K R 108 F30 Langham D H 32 Langhey C H r74 Langridge P r307 Lantin M M r328 Lara F M r308 r309 Larchenko E A r310 r400 Larkins B A r50 r163 r176 r355 r356 r465 Larson R L 46 r311 r312 Latham M D r80 Laubengayer R A 101 Laufs J <u>41</u> Laughnan J R 97 r139 r559 Laurenson P M 80 Laurie D A r313 r314 Le Court de Billot M R 108 r315 Leath S r316 r317 r318 Leaver C J 45 58 73 107 149 r101 r102 r243 r319 r348 Leblova S r603 Lee K W r601 Lee K W r601 Lee M 87 Lee T-C r658 Lefebvre C r424 r425 Legg D E r320 r619 r620 Lemor C A 107 r321 Leonard K J r286 r410 Leonard K J r528 Leonard C r528 Leopold A C r528Leoport C r174Leoctte R J 27Lescure J-C r407Leto K J 44Levchenko T A r310Levic J r122Levings C S III 45 46149 r47 r58 r108 r131 r322 r560 r628 Liberta A E r12 Liddell A D r348 Lillehoj E B r26 Lillia M r323 Limberg P r324 Lin B-Y 74 r325 Lin L-S 106 r326 Lindell L S -355 Lindell J S r355 r356 Lindenhahn M M r200 Lindenhahn M M r2 Liu D J r634 Liu Z-M r707 Lloyd E J r604 Lodha M L r500 Loerz H r673 Loffler C M r327 Logrono M L r328 Logvinenko V F r190 Loi N r329 r330 Longley A E 78 80 Lonsdale D M 148 149 r101 r234 r331 r332 148 149 -59 Lopatina L M r442 Lopaz-H A r333 Lord E M r467 Lorenzoni C r329 r330 r334 r335 r362 r449 Lorz H r19 Louie R r336 Loyola-Vargas V M r337 Lu H-S r658 Lu Y r708 Ludenia L 84 Ludevid M D r625 Ludwig S R 107 r338 r339 Lupotto E r340 Lupotto E r340 Lutsenko G N 61 Lysikov V N r341 Machado E C r342

Magalhaes H H S r342 Maggio J C r327 Maggiore T r334 Magill C W 39 Magnavaca R r165 Magoja J L 64 65 66 67 69 Maguire M P 19 r343 r344 Maier U 55 Maity S S r Maler U 55 Makarjuola W A r345 Makarjuola W A r345 Malhi N S r274 Malhotra V V r346 Malkin R r368 Malone C P 59 Mandahar C L r194 Mangelsdorf P C 2 35 101 103 r347 Mani V P 2 Mann D A 53 Manninger I r426 r427 Manson J C r348 Manuwoto S r349 r350 Manzocchi L A <u>78</u> r112 r351 r626 Marchand J L r201 Marchanko M M r432 Marchionni M 89 107 r352 Marechal L 149 r353 Marechal L 149 Mareck J r144 Mariani P r505 Marinkovic B r3 Marinkovic B r354 Marks M D 107 r355 r356 Marotta R r357 Marquette J r358 Marquez-S F r167 r242 r467 r642 Martegani R Martegani E r90 r359 Martin C C r704 Martin F G Martin I F r360 Martin M J r4 Martin M J r4 Martineau B r361 Martiniello P r362 Maruyama K r363 Mascarenhas J P 76 76 r364 Mashkova T D r22 Mashnenkov A S 61 Masson P 22 Mathe P r297 Mathe-Gaspar G r297 Mather K 32 Mathieu C r653 Matousek J 37 Matters G L r365 r366 Matzinger D F 149 r47 Mayfield S P r367 r368 r615 r616 McCarthy S A r141 McCarty D R 49 55 61 107 r369 McClean P E r213 McClintock B 19 78 100 102 103 McCormick S M 55 McCully M 7 McCully M E r232 Mcdonald M B r147 r147 McKinnon J r586 McKnight G L r371 McMillian W W r26 r682 McMullen M D 23 106 r372 26 McWilliams A A Meagher R 89 Megalla S E r373 Mehta A K r627 Mehta S L r500 Meins F Jr r671 Meints R H r322 Melchinger A E r374 r375 r376 Mendes A P r377 Mendoza-0 L E r179 r434 Mendu N 149 Meno A r389 Merckelbach A 42 +76 r378 Merezhinsky Y G r190 Mertz E T r207 Messing J 81 r220 r338 r339 Metz J G 52 Metzlaff M r200 Metzlaff M Mi C C r659 Michaels T E r379 Miernyk J A r380 Mihm J A r381 Mikolajczak K L r619 r690 Miku V E r287 r382

3

This is an informal news letter by which working research information on the genetics and cytogenetics of maize is shared. The information and data are presented by Cooperators with the understanding that they will not be used in publications without their specific consent.

Appendix to No. 44, 1970

No. 50, pp. 157-180

In this issue

No. 55

No. 52

No. 50

No. 52

Annual in each issue

Annual in each issue

No. 53, pp. 153-163

Annual in each issue

No. 49, pp. 3-4

In this issue

In this issue

Appendix to No. 36, 1962

Author and Name Indexes Nos. 3 through 43 Nos. 44 through 50 Nos. 51 to date Mailing List

Stock Catalogs Genetic Stocks Translocations

Symbols Nos. 12 through 35 Nos. 36 through 53 Nos. 54 to date

Rules of Nomenclature

Cytogenetic Working Maps

Gene List

Working Linkage Maps

News Letter Files (History)

Reproductions	
1923	No.
1929	No.
1929-30	No.
1932	No.
1932-33 (MNL No. 3)	No.

Back copies of most issues are available on request, from No. 30 (1956) to date. A microfilm of Nos. 1-29 and 33 is available for \$9.50, payable by a check made out to Maize Genetics.

An interregional agronomic evaluation of inbred lines in five maturity groups has been carried out cooperatively and has been compiled by Larry Darrah. Copies are available at cost; please see page 52.

